2个回答
展开全部
C(n,m)=n!/[m!*(n-m)!]
A(n,m)=n*(n-1)*(n-2)……(n-m+1),也就是由n往下每个数连乘。
C(n,m)=A(n,m)/A(m,m)。一般地,从n个不同的元素中,任取m(m≤n)个元素为一组,叫作从n个不同元素中取出m个元素的一个组合。
扩展资料
组合总数(total number of combinations)是一个正整数,指从n个不同元素里每次取出0个,1个,2个,…,n个不同元素的所有组合数的总和,即
n元集合的组合总数是它的子集的个数。从n个不同元素中每次取出m个不同元素而形成的组合
的性质是:
利用这两个性质,可化简组合数的计算及证明与组合数有关的问题。
重复组合(combination with repetiton)是一种特殊的组合。从n个不同元素中可重复地选取m个元素。不管其顺序合成一组,称为从n个元素中取m个元素的可重复组合。
当且仅当所取的元素相同,且同一元素所取的次数相同,则两个重复组合相同。从n个不同元素中可重复地选出m个元素的不同组合种数记为或,且
参考资料
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |