高一物理题目
19.(14分)如图所示,质量为m=1kg的小物体(可视为质点),放在质量为M=4kg,长为L=1.6m的小车左端,其间动摩擦因数为0.5,今使小物体与小车以共同的初速度...
19. (14分)如图所示,质量为m=1kg的小物体(可视为质点),放在质量为M=4kg,长为L=1.6m的小车左端,其间动摩擦因数为0.5,今使小物体与小车以共同的初速度v0向右运动,水平面光滑,且小车与墙碰撞后将立即静止,但并未与墙粘连,而小物体与墙碰撞时将无机械能损失,问:
(1)当v0满足何种条件,小车最终静止
(2)当v0满足何种条件,小物体将不至从小车上落下。
处理提问 展开
(1)当v0满足何种条件,小车最终静止
(2)当v0满足何种条件,小物体将不至从小车上落下。
处理提问 展开
展开全部
解析:求解本题,首先要对整个运动过程有一个清晰的认识:如果v0比较小,小车与墙碰撞后立刻静止,而小物体会在滑动摩擦力的作用下做匀减速运动,小物体还没到达小车的右端就已经停止运动,当然,这种情况下小车是静止的;当v0比较大时,小车静止后,小物体做匀减速运动,然后与墙碰撞,又被原速度大小反向弹回,小物体弹回后,继续做匀减速运动,而小车在滑动摩擦力的作用下开始向左做匀加速直线运动,当小车与小物体的速度再次相同时,它们以共同速度匀速向左运动(注意:我们假设在它们达到共同速度时,小物体还没从小车上落下)。
可见,小物体刚好停止在小车的右端或者刚好没与墙壁发生碰撞是小车能够最终静止的临界条件,此过程中,只有摩擦力做负功,根据动能定理可得,-μmgL=0-mv2/2,可得v=4m/s,即当v0≤4m/s,小车最终静止。
设初速度v0=v时,小物体最终到达小车的左端,并随小车以相同的速度向左运动,设小物体与墙的碰撞速度为v`,小物体与小车最终的速度为v共,则在小车从静止到最终共同运动的过程中,由小物体和小车组成的系统的机械能转化为系统的内能(摩擦生热),即mv2/2-(m+M)v共2/2=2μmgL,从小车静止到小物体撞到墙这一过程中,对小物体运用动能定理有,-μmgL=mv`2/2-mv2/2,从小物体被弹回到它们以共同速度运动,有小车和小物体组成的系统的动量守恒,故mv`=(m+M)v共,联立以上三式,代入数据可解得v=6m/s,即当v0≤6m/s,小物体将不至从小车上落下。
可见,小物体刚好停止在小车的右端或者刚好没与墙壁发生碰撞是小车能够最终静止的临界条件,此过程中,只有摩擦力做负功,根据动能定理可得,-μmgL=0-mv2/2,可得v=4m/s,即当v0≤4m/s,小车最终静止。
设初速度v0=v时,小物体最终到达小车的左端,并随小车以相同的速度向左运动,设小物体与墙的碰撞速度为v`,小物体与小车最终的速度为v共,则在小车从静止到最终共同运动的过程中,由小物体和小车组成的系统的机械能转化为系统的内能(摩擦生热),即mv2/2-(m+M)v共2/2=2μmgL,从小车静止到小物体撞到墙这一过程中,对小物体运用动能定理有,-μmgL=mv`2/2-mv2/2,从小物体被弹回到它们以共同速度运动,有小车和小物体组成的系统的动量守恒,故mv`=(m+M)v共,联立以上三式,代入数据可解得v=6m/s,即当v0≤6m/s,小物体将不至从小车上落下。
展开全部
取g=9.8N/kg
摩擦力f=1×9.8×0.5N=4.9N
质点动能Ek=0.5mv²=0.5×1×v0²=0.5v0²
当功能足够使小球撞到墙壁所需要克服阻力做的功w=fs=4.9×1.6=7.84J
EK=w
0.5v0²=7.84j
v0=2.8√2
如果取g=10的话,那么v0=4
所以当v0<2.8√2(g取10为4)的时候,小车最终静止
如果小物体不从小车上落下,反弹后最多,质点在小车上的相对位移为1.6m
质点反弹后受到阻力做匀减速运动,加速度大小为f/m=4.9/1=4.9m/s²,方向为指向墙壁;
小车做匀加速运动,加速度大小为f/M=4.9/4=1.225m/s²,方向为远离墙壁
所以二者之间的相对加速度为4.9+1.225=6.125m/s²
反弹时初速度为v
根据公式v²=2as
可以知道v=14√0.1
也就是说碰撞时小球的动能为9.8j
加上要克服阻力做的功7.84j,可得初动能17.64
可得v0=√17.64
所以v0小于√17.64时不至于落下。
如果取g=10N/kg
计算是v0小于6m/s时不至于从小车上落下。
摩擦力f=1×9.8×0.5N=4.9N
质点动能Ek=0.5mv²=0.5×1×v0²=0.5v0²
当功能足够使小球撞到墙壁所需要克服阻力做的功w=fs=4.9×1.6=7.84J
EK=w
0.5v0²=7.84j
v0=2.8√2
如果取g=10的话,那么v0=4
所以当v0<2.8√2(g取10为4)的时候,小车最终静止
如果小物体不从小车上落下,反弹后最多,质点在小车上的相对位移为1.6m
质点反弹后受到阻力做匀减速运动,加速度大小为f/m=4.9/1=4.9m/s²,方向为指向墙壁;
小车做匀加速运动,加速度大小为f/M=4.9/4=1.225m/s²,方向为远离墙壁
所以二者之间的相对加速度为4.9+1.225=6.125m/s²
反弹时初速度为v
根据公式v²=2as
可以知道v=14√0.1
也就是说碰撞时小球的动能为9.8j
加上要克服阻力做的功7.84j,可得初动能17.64
可得v0=√17.64
所以v0小于√17.64时不至于落下。
如果取g=10N/kg
计算是v0小于6m/s时不至于从小车上落下。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |