二重积分的性质
性质1、(积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即
性质2、(积分满足数乘) 被积函数的常系数因子可以提到积分号外,即
性质3、 如果在区域D上有f(x,y)≦g(x,y),则
性质4、 设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积,则
性质5、 如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。设函数f(x,y)在有界闭区域D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得
扩展资料:
二重积分意义
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
几何意义
在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分:
其中
表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积。
数值意义
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
参考资料来源:百度百科—二重积分
∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ
性质2 被积函数的常系数因子可以提到积分号外,即
∫∫kf(x,y)dσ=k∫∫f(x,y)dσ (k为常数)
性质3 如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ≦∫∫g(x,y)dσ
推论 ∣∫∫f(x,y)dσ∣≦∫∫∣f(x,y)∣dσ
性质4 设M和m分别是函数f(x,y)在有界闭区间D上的最大值和最小值,σ为区域D的面积,
则mσ≦∫∫f(x,y)dσ≦Mσ
性质5 如果在有界闭区域D上f(x,y)=1, σ为D的面积,则σ=∫∫dσ
性质6 二重积分中值定理
设函数f(x,y)在有界闭区间D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得 ∫∫f(x,y)dσ=f(ξ,η)●σ
二重积分的概念与性质,你看懂点没