微分方程xy'-y-根号下(x^2+y^2)=0的通解。 5

 我来答
WenScienceman
2011-05-11 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1595
采纳率:66%
帮助的人:873万
展开全部
这题出现了x^2+y^2,可能在极坐标系下求解比较容易
x=r*cosθ y=r*sinθ
极坐标系下dx=cosθ dr-sinθ rdθ dy=sinθ dr+cosθ rdθ
方程化为rcosθ *(sinθ dr+cosθ rdθ)/(cosθ dr-sinθ rdθ ) -r*sinθ-r=0
化简为dr/r = dθ*(1+sinθ)/cosθ
右边=dθ* cosθ*(1+sinθ)/(cosθ)^2=d(sinθ)/(1-sinθ)
dr/r =d(sinθ)/(1-sinθ)
积分得:exp(r)=-exp(C*(1-sinθ))
r=C/(1-sinθ) (C为常量)
sinθ=y/r ,r=sqrt(x^2+y^2)
化会直角坐标系 sqrt(x^2+y^2) = C/(1-y/sqrt(x^2+y^2))
即 sqrt(x^2+y^2) -y =C

在计算过程中,可能舍掉了一些解,也可能多求了一些解,还得再仔细算算
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式