不等式的性质

lql3541280
2011-05-12 · TA获得超过135个赞
知道答主
回答量:43
采纳率:0%
帮助的人:32.1万
展开全部
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
练习:
1.若a≠0,比较(a2+1)2与a4+a2+1的大小.(>)
2.若a>0,b>0且a≠b,比较a3+b3与a2b+ab2的大小.(>)
3.判断下列命题的真假,并说明理由.
(1)若a>b,则a2>b2;(假) (2)若a>b,则a3>b3;(真)
(3)若a>b,则ac2>bc2;(假) (4)若,则a>b;(真)
若a>b,c>d,则a-d>b-c.(真).
转载http://zhidao.baidu.com/question/228332431.html
958804384
2011-05-13 · TA获得超过542个赞
知道答主
回答量:110
采纳率:0%
帮助的人:54.1万
展开全部
不等式的最基本性质
  ①如果x>y,那么y<x;如果y<x,那么x>y;(对称性)   ②如果x>y,y>z;那么x>z;(传递性)   ③如果x>y,而z为任意实数或整式,那么x+z>y+z;(加法则)   ④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz;(乘法则)   ⑤如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z<y÷z。   ⑥如果x>y,m>n,那么x+m>y+n(充分不必要条件)   ⑦如果x>y>0,m>n>0,那么xm>yn   ⑧如果x>y>0,那么x的n次幂>y的n次幂(n为正数)   如果由不等式的基本性质出发,通过逻辑推理,可以论证大量的初等不等式,以上是其中比较有名的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
库承F0
2011-05-12
知道答主
回答量:14
采纳率:0%
帮助的人:2.2万
展开全部
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么a+c>b+d.
性质5:如果a>b>0,c>d>0,那么ac>bd.
性质6:如果a>b>0,n∈N,n>1,那么an>bn,且.
例1:判断下列命题的真假,并说明理由.
若a>b,c=d,则ac2>bd2;(假)
若,则a>b;(真)
若a>b且ab<0,则;(假)
若a若,则a>b;(真)
若|a|b2;(充要条件)
命题A:a命题A:,命题B:0说明:本题要求学生完成一种规范的证明或解题过程,在完善解题规范的过程中完善自身逻辑思维的严密性.
a,b∈R且a>b,比较a3-b3与ab2-a2b的大小.(≥)
说明:强调在最后一步中,说明等号取到的情况,为今后基本不等式求最值作思维准备.
例4:设a>b,n是偶数且n∈N*,试比较an+bn与an-1b+abn-1的大小.
说明:本例条件是a>b,与正值不等式乘方性质相比在于缺少了a,b为正值这一条件,为此我们必须对a,b的取值情况加以分类讨论.因为a>b,可由三种情况(1)a>b≥0;(2)a≥0>b;(3)0>a>b.由此得到总有an+bn>an-1b+abn-1.通过本例可以开始渗透分类讨论的数学思想.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
hf010209
2011-05-12 · TA获得超过10.4万个赞
知道大有可为答主
回答量:2.3万
采纳率:56%
帮助的人:8846万
展开全部
不等式性质1:不等式的两边同时加上一个相同的数,不等号不改变方向;
不等式性质2:不等式的两边同时乘或除以一个正数,不等号不改变方向;
不等式性质3:不等式的两边同时乘或除以一个负数,不等号要改变方向。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zzc5862119
2011-05-12
知道答主
回答量:9
采纳率:0%
帮助的人:0
展开全部
无聊
追问
那你觉得学习很无聊吧。。。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式