化简cos(α-π/2)/sin(5π/2+α)·sin(π-α)·cos(2π-α)
2个回答
展开全部
化简[cos(α-π/2)]/[sin(5π/2+α)sin(π-α)cos(2π-α) ]
原式=[cos(π/2-α)]/[sin(2π+π/2+α)sin(π-α)cos(2π-α)]
=(sinα)/[sin(π/2+α)sinαcosα)]
=(sinα)/[(-cos²α)sinα]=1/(-cos²α)=-sec²α
原式=[cos(π/2-α)]/[sin(2π+π/2+α)sin(π-α)cos(2π-α)]
=(sinα)/[sin(π/2+α)sinαcosα)]
=(sinα)/[(-cos²α)sinα]=1/(-cos²α)=-sec²α
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询