求高数大神解答
1个回答
展开全部
原式=1/2ln(x²+1)|(0,+∞) -Aln|x+2||(0,+∞)
=lim(x->+∞)1/2ln(x²+1) -0-Alim(x->+∞)ln|x+2| +Aln2
=lim(x->+∞)1/2ln(x²+1) -Alim(x->+∞)ln|x+2| +Aln2
=lim(x->+∞)ln√(x²+1) -lim(x->+∞)ln|x+2|^A +Aln2
=lim(x->+∞)ln√(x²+1)/(x+2)^A +Aln2
因为收敛,所以
A=1
此时lim(x->+∞)ln√(x²+1)/(x+2)^A
=lim(x->+∞)ln√(x²+1)/(x+2)
=lim(x->+∞)ln√(1+1/x²)/(1+2/x)
=ln1
=0
所以
原式=ln2
=lim(x->+∞)1/2ln(x²+1) -0-Alim(x->+∞)ln|x+2| +Aln2
=lim(x->+∞)1/2ln(x²+1) -Alim(x->+∞)ln|x+2| +Aln2
=lim(x->+∞)ln√(x²+1) -lim(x->+∞)ln|x+2|^A +Aln2
=lim(x->+∞)ln√(x²+1)/(x+2)^A +Aln2
因为收敛,所以
A=1
此时lim(x->+∞)ln√(x²+1)/(x+2)^A
=lim(x->+∞)ln√(x²+1)/(x+2)
=lim(x->+∞)ln√(1+1/x²)/(1+2/x)
=ln1
=0
所以
原式=ln2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询