下图的结果是怎么算出的 请写出(详细过程)谢谢 紧急求助 (高等数学 ,理工学科)!
展开全部
如果 y 与 z 不相关,那计算就简单了:
∫√(R²-y²) * dy
设 y = R*sinα,dy = R*cosα*dα,α 的范围变换为 : [-π/2, π/2]
2∫√(R²-y²) * dy
=2∫R*cosα*(R*cosα*dα)
=∫R²*(2cos²α)dα
=∫R²*(1+cos2α)*dα
=∫R²*dα + 1/2*∫R²*cos2α*d(2α)
=[R²α + 1/2*R²*sin2α]|α=-π/2 → π/2
=πR² + 1/2*R²*[sinπ - sin(-π)]
=πR²
设 z = R*tanα,则 dz = R*sec²α*dα。α 的范围为:[-π/4, π/4]
∫dz/(R²+z²)
=∫R*sec²α*dα/[R²*(1+tan²α)]
=∫sec²α*dα/[R*sec²α]
=∫dα/R
=α/R|α=-π/4→π/4
=π/(2R)
所以,上面总的积分:
=(πR²)*[π/(2R)]
=π²R/2
∫√(R²-y²) * dy
设 y = R*sinα,dy = R*cosα*dα,α 的范围变换为 : [-π/2, π/2]
2∫√(R²-y²) * dy
=2∫R*cosα*(R*cosα*dα)
=∫R²*(2cos²α)dα
=∫R²*(1+cos2α)*dα
=∫R²*dα + 1/2*∫R²*cos2α*d(2α)
=[R²α + 1/2*R²*sin2α]|α=-π/2 → π/2
=πR² + 1/2*R²*[sinπ - sin(-π)]
=πR²
设 z = R*tanα,则 dz = R*sec²α*dα。α 的范围为:[-π/4, π/4]
∫dz/(R²+z²)
=∫R*sec²α*dα/[R²*(1+tan²α)]
=∫sec²α*dα/[R*sec²α]
=∫dα/R
=α/R|α=-π/4→π/4
=π/(2R)
所以,上面总的积分:
=(πR²)*[π/(2R)]
=π²R/2
追问
不对吧 😰结果是(π^2 *R)/2
追答
楼主不会看不懂吧!^_^
我的答案是:
π²R/2 难道不等于 (π²R)/2 吗?!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-06-06 广告
2024-06-06 广告
ISTA3L是一个基于研究、数据驱动的测试协议,它模拟了由零售公司完成的产品订单被直接运送给消费者时所经历的危险,它允许用户评估包装产品的能力,以承受运输和处理包装产品时所经历的供应链危险,从接收到任何电子商务零售商履行操作,直到最终消费者...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
2∫{-R,R} √(R^2-y^2)dy就是圆的面积,等于 Pi*R^2。
事实上
令 y= sin t, 则 √(R^2-y^2)=R*cos t, dy = R*cos t,
2∫{-R,R} √(R^2-y^2)dy =2∫{-Pi/2,Pi/2}R^2(cos t)^2dt
=4*R^2∫{0,Pi/2} (1+cos(2t)/2 dt=R^2*Pi
而
∫{-R,R}1/(R^2+z^2)dz =(1/R) *arctan (z/R)|{-R,R}=Pi/(2R)
所以
原式=(Pi*R^2)*(Pi/2R)=(Pi^2*R)/2
事实上
令 y= sin t, 则 √(R^2-y^2)=R*cos t, dy = R*cos t,
2∫{-R,R} √(R^2-y^2)dy =2∫{-Pi/2,Pi/2}R^2(cos t)^2dt
=4*R^2∫{0,Pi/2} (1+cos(2t)/2 dt=R^2*Pi
而
∫{-R,R}1/(R^2+z^2)dz =(1/R) *arctan (z/R)|{-R,R}=Pi/(2R)
所以
原式=(Pi*R^2)*(Pi/2R)=(Pi^2*R)/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询