已知a*根号(1-b2)+b*根号(1—a2)=1,求证a2+b2=1
展开全部
证明:
根据题意我们知道:b^2<=1 a^2<=1
因此:IaI<=1 IbI<=1
因此我们可设:sinx=a siny=b
则有:sinx根号(1-siny^2)+siny根号(1-sinx^2)=1
sinxcosy+sinycosx=1
sin(x+y)=1
则x+y=π/2
即:x、y互余,则sinx=cosy
所以:a^2+b^2=(sinx)^2+(siny)^2=(cosy)^2+(siny)^2=1
问题得证。
根据题意我们知道:b^2<=1 a^2<=1
因此:IaI<=1 IbI<=1
因此我们可设:sinx=a siny=b
则有:sinx根号(1-siny^2)+siny根号(1-sinx^2)=1
sinxcosy+sinycosx=1
sin(x+y)=1
则x+y=π/2
即:x、y互余,则sinx=cosy
所以:a^2+b^2=(sinx)^2+(siny)^2=(cosy)^2+(siny)^2=1
问题得证。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询