求线性方程组的通解 请写下过程谢谢!
4个回答
上海华然企业咨询
2024-10-30 广告
2024-10-30 广告
在上海华然企业咨询有限公司,我们深刻理解大模型测试对于确保数据准确性、提升业务效率及优化用户体验的重要性。我们的测试团队专注于对大模型进行全面而细致的评估,涵盖性能稳定性、预测准确性、响应速度及兼容性等多个维度。通过模拟真实业务场景,我们力...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
方程组的通解为:
x_1=4-t,x_2=2/3,x_3=t,x_4=-7/3-2t(t为任意常数)
理由如下:
第二个方程减去第一个方程得到:
(1)2x_2+2x_3+x_4=-1
第三个方程减去第一、第二个方程的和,得到:
(2)3x_2=2,即x_2=2/3
第四个方程减去第二、第三个方程的和,得到:
(3)-6x_2-6x_3-3x_4=3,即:
2x_2+2x_3+x_4=-1,与方程(1)相同
将(2)代入(1)得到:2x_3+x_4=-7/3
所以令x_3=t倒代回去即可解出x_4,x_1,从而得到前述的通解。
x_1=4-t,x_2=2/3,x_3=t,x_4=-7/3-2t(t为任意常数)
理由如下:
第二个方程减去第一个方程得到:
(1)2x_2+2x_3+x_4=-1
第三个方程减去第一、第二个方程的和,得到:
(2)3x_2=2,即x_2=2/3
第四个方程减去第二、第三个方程的和,得到:
(3)-6x_2-6x_3-3x_4=3,即:
2x_2+2x_3+x_4=-1,与方程(1)相同
将(2)代入(1)得到:2x_3+x_4=-7/3
所以令x_3=t倒代回去即可解出x_4,x_1,从而得到前述的通解。
更多追问追答
追问
请问线代的方法 解出基础解系。。。
追答
通解为(x_1,x_2,x_3,x_4)=(4-t,2/3,t,-7/3-2t)=(4,2/3,0,-7/3)+t(-1,0,1,-2)
所以,基础解系为(4,2/3,0,-7/3)是特解,(-1,0,1,-2)为对应齐次方程组的通解生成元。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
写成矩阵,求逆,就可以解出来
x1 =31/6,x2 =2/3,x3 =-7/6,x4=0
x1 =31/6,x2 =2/3,x3 =-7/6,x4=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
点击弹出一个
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询