证明(tanα-1)/(tanα+1)=(1-sin2α)/(sin^2α-cos^2α)
4个回答
展开全部
证明:
(tanα-1)/(tanα+1)
=[sinα/cosα-1]/[(sinα/cosα)+1]
=[(sinα-cosα)/cosα]/[(sinα+cosα)/cosα]
=(sinα-cosα)/(sinα+cosα)
=-[(sinα-cosα)(sinα-cosα)]/[(cosα+sinα)(cosα-sinα)]
=-[(sinα)^2-2sinαcosα+(cosα)^2]/[(cosα)^2-(sinα)^2]
1-sin2α)/(sin^2α-cos^2α)=右式
所以:原等式成立
(tanα-1)/(tanα+1)
=[sinα/cosα-1]/[(sinα/cosα)+1]
=[(sinα-cosα)/cosα]/[(sinα+cosα)/cosα]
=(sinα-cosα)/(sinα+cosα)
=-[(sinα-cosα)(sinα-cosα)]/[(cosα+sinα)(cosα-sinα)]
=-[(sinα)^2-2sinαcosα+(cosα)^2]/[(cosα)^2-(sinα)^2]
1-sin2α)/(sin^2α-cos^2α)=右式
所以:原等式成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
左式通分=(sina-cosa)/(sina+cosa)分子分母同乘(sina-cosa)即可!此法较简便些!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1
sin^2α/(1+cotα)+cos^2α/(1+tanα)
=sin^2α·sinα/(sinα+cosα)+cos^2α·cosα/(cosα+sinα)
=(sin^3α+cos^3α)/(sinα+cosα)
=(sinα+cosα)(sin^2α-sinα·cosα+cos^2α)/(sinα+cosα)
=sin^2α-sinα·cosα+cos^2α
=1-sinαcosα
2
tanαsina/(tanα-sina)
=tanαsina/(sinα/cosα-sina)
=(sinα/cosα)/(1/cosα-1)
=sinα/(1-cosα)
=1/tan(α/2);
(tanα+sinα)/tanαsinα
=((sinα/cosα)+sinα)/tanαsinα
=((1/cosα)+1)/tanα
=((1/cosα)+1)·cosα/tanα·cosα
=(1+cosα)/sinα
=1/tan(α/2);
∴左=右;
tanαsina/(tanα-sina)=(tanα+sinα)/tanαsinα
3
(1-sin^4α-cos^4α)/(1-sina^6α-cos^6α)
=[1-(sin^2α+cos^2α)^2+2sin^2α·cos^2α]/[1-(sin^2α+cos^2α)(sin^4α-sin^2α·cos^2α+cos^4α)]
=[1-1+2sin^2α·cos^2α]/[1-1*(sin^4α+2sin^2α·cos^2α+cos^4α-3sin^2α·cos^2α)]
=2sin^2α·cos^2α/[1-(sin^2α+cos^2α)^2+3sin^2α·cos^2α]
=2sin^2α·cos^2α/[1-1+3sin^2α·cos^2α]
=2/3
看看怎么样?
sin^2α/(1+cotα)+cos^2α/(1+tanα)
=sin^2α·sinα/(sinα+cosα)+cos^2α·cosα/(cosα+sinα)
=(sin^3α+cos^3α)/(sinα+cosα)
=(sinα+cosα)(sin^2α-sinα·cosα+cos^2α)/(sinα+cosα)
=sin^2α-sinα·cosα+cos^2α
=1-sinαcosα
2
tanαsina/(tanα-sina)
=tanαsina/(sinα/cosα-sina)
=(sinα/cosα)/(1/cosα-1)
=sinα/(1-cosα)
=1/tan(α/2);
(tanα+sinα)/tanαsinα
=((sinα/cosα)+sinα)/tanαsinα
=((1/cosα)+1)/tanα
=((1/cosα)+1)·cosα/tanα·cosα
=(1+cosα)/sinα
=1/tan(α/2);
∴左=右;
tanαsina/(tanα-sina)=(tanα+sinα)/tanαsinα
3
(1-sin^4α-cos^4α)/(1-sina^6α-cos^6α)
=[1-(sin^2α+cos^2α)^2+2sin^2α·cos^2α]/[1-(sin^2α+cos^2α)(sin^4α-sin^2α·cos^2α+cos^4α)]
=[1-1+2sin^2α·cos^2α]/[1-1*(sin^4α+2sin^2α·cos^2α+cos^4α-3sin^2α·cos^2α)]
=2sin^2α·cos^2α/[1-(sin^2α+cos^2α)^2+3sin^2α·cos^2α]
=2sin^2α·cos^2α/[1-1+3sin^2α·cos^2α]
=2/3
看看怎么样?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询