已知:梯形ABCD中,AD//BC,AB=CD,点M、N、E、F分别是边AD、BC、AB、DC的中点。求证:四边形MENF是菱形
展开全部
``连接对角线
M,N,E,F分别是边AD,BC,AB,DC的中点
所以 EM//BD EN//BD MF//AC EN//AC
所以 EM//NF MF//EN (根据三角形的中位线定理)
所以 四边形MENF是平行四边形
因为 AB=CD E F是AB CD的中点
所以 EB=CF 角EBN=角FCN
因为 N是BC的中点
所以 BN=CN
所以 三角形EBN全等于三角形FCN
所以 EN=FN
所以 四边形MENF是菱形
M,N,E,F分别是边AD,BC,AB,DC的中点
所以 EM//BD EN//BD MF//AC EN//AC
所以 EM//NF MF//EN (根据三角形的中位线定理)
所以 四边形MENF是平行四边形
因为 AB=CD E F是AB CD的中点
所以 EB=CF 角EBN=角FCN
因为 N是BC的中点
所以 BN=CN
所以 三角形EBN全等于三角形FCN
所以 EN=FN
所以 四边形MENF是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:∵E、F、N分别是BM,CM,BC的中点,
∴EN∥MC,FN∥BM.
∴四边形MENF是平行四边形.
∵梯形ABCD是等腰梯形,
∴AB=CD,
∴∠A=∠D.
在△ABM和△DCM中,
∵AB=DC,∠A=∠D,AM=DM,
∴△ABM≌△DCM,
∴BM=CM.
∴ME=MF,
∴平行四边形MENF是菱形.
∴EN∥MC,FN∥BM.
∴四边形MENF是平行四边形.
∵梯形ABCD是等腰梯形,
∴AB=CD,
∴∠A=∠D.
在△ABM和△DCM中,
∵AB=DC,∠A=∠D,AM=DM,
∴△ABM≌△DCM,
∴BM=CM.
∴ME=MF,
∴平行四边形MENF是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵梯形ABCD中,AD//BC,AB=CD
AC=BD
MF//=DB/2
NE//=DB/2
MF//=NE
四边形ENFM是平行四边形
又MF=DB/2 EM=AC/2 AC=BD
MF=EM
∴四边形ENFM菱形
AC=BD
MF//=DB/2
NE//=DB/2
MF//=NE
四边形ENFM是平行四边形
又MF=DB/2 EM=AC/2 AC=BD
MF=EM
∴四边形ENFM菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已知ABCD为梯形,M为AD的中点
得MB=MC
MBC为等腰三角形
N为BC的中点
E为BM的中点
得EN//MC
得BEN为等腰三角形,且EB=EN
又EB=EM
得EM=EN
同理可证FM=FN
MB=MC
ME=EB,MF=FC
得ME=MF
即,MENF为菱形
得MB=MC
MBC为等腰三角形
N为BC的中点
E为BM的中点
得EN//MC
得BEN为等腰三角形,且EB=EN
又EB=EM
得EM=EN
同理可证FM=FN
MB=MC
ME=EB,MF=FC
得ME=MF
即,MENF为菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询