
一道高一物理题,超有挑战性(泪求详解)
如图所示,B是质量为2m、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质量为m的细长直杆,光滑套管D被固定在竖直方向,A可以自由上下运动,物块C的质量为m,紧靠半球...
如图所示,B是质量为2m、半径为R的光滑半球形碗,放在光滑的水平桌面上.A是质量为m的细长直杆,光滑套管D被固定在竖直方向,A可以自由上下运动,物块C的质量为m,紧靠半球形碗放置.初始时,A杆被握住,使其下端正好与碗的半球面的上边缘接触.然后从静止开始释放A,A、B、C便开始运动.求: 当长直杆A的下端运动到距半球形碗的最低点R/2处,长直杆A的速度和B、C的速度?(要详解,还要分解示意图)
展开
3个回答
展开全部
首先求出A;b;c:速度之比
设A下降R/2,B,C运动距离为R-√(R^2-R^2/4)=(2-√3)R/2
故 VA:VB;VC=R/2:(2-√3)R/2:(2-√3)R/2
VB=VC=(2-√3)VA
mgR/2=1/2mVA^2+1/2*2mVB^2+1/2mVC^2=1/2mVA^2+1/2*2m[(2-√3)VA]^2+1/2m[(2-√3)VA]^2
VA^2=gR/[7-3√3]
带入VB=VC=(2-√3)VA=OK 慢慢整理
设A下降R/2,B,C运动距离为R-√(R^2-R^2/4)=(2-√3)R/2
故 VA:VB;VC=R/2:(2-√3)R/2:(2-√3)R/2
VB=VC=(2-√3)VA
mgR/2=1/2mVA^2+1/2*2mVB^2+1/2mVC^2=1/2mVA^2+1/2*2m[(2-√3)VA]^2+1/2m[(2-√3)VA]^2
VA^2=gR/[7-3√3]
带入VB=VC=(2-√3)VA=OK 慢慢整理
追问
能不能发张速度分解示意图
追答
不存在速度分解吧,VB=VC明显
计算VA:VB就是了
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询