决定系数的原理
表征依变数Y的变异中有多少百分比,可由控制的自变数X来解释.
相关系数(coefficient of correlation)的平方即为决定系数。它与相关系数的区别在于除掉|R|=0和1情况,
由于R2<R,可以防止对相关系数所表示的相关做夸张的解释。
决定系数:在Y的总平方和中,由X引起的平方和所占的比例,记为R2(R的平方)
决定系数的大小决定了相关的密切程度。
当R2越接近1时,表示相关的方程式参考价值越高;相反,越接近0时,表示参考价值越低。这是在一元回归分析中的情况。但从本质上说决定系数和回归系数没有关系,就像标准差和标准误差在本质上没有关系一样。
在多元回归分析中,决定系数是相关系数的平方。
表达式:R^2=SSR/SST=1-SSE/SST
其中:SST=SSR+SSE,SST (sum of squares for total)为总平方和,SSReg (sum of squares for regression为回归平方和,SSE (sum of squares for error) 为残差平方和。
注:(不同书命名不同)
回归平方和:SSR(Sum of Squares for regression) = ESS (explained sum of squares)
残差平方和:SSE(Sum of Squares for Error) = RSS (residual sum of squares) 总离差平方和:SST(Sum of Squares for total) = TSS(total sum of squares) SSE+SSR=SST RSS+ESS=TSS
意义:拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。
取值范围:0-1.
2024-04-08 广告
广告 您可能关注的内容 |