长方形也是平行四边形是对的。
长方形也叫矩形,是一种平面图形,是有一个角是直角的平行四边形。长方形也定义为四个角都是直角的平行四边形。正方形是四条边长度都相等的特殊长方形。
长方形的性质为:两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;有2条对称轴(正方形有4条);具有不稳定性(易变形);长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。
扩展资料:
平行四边形,是在同一个二维平面内,由两组平行线段组成的闭合图形。平行四边形一般用图形名称加四个顶点依次命名。注:在用字母表示四边形时,一定要按顺时针或逆时针方向注明各顶点。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
长方形是平行四边形。这句话是对的。长方形是有一个角是直角的平行四边形。正方形是四条边长度都相等的特殊长方形。根据平行四边形的定义可得:长方形和正方形都是平行四边形,并且长方形和正方形是特殊的平行四边形。
判定:
1、两组对边分别平行的四边形是平行四边形(定义判定法);
2、一组对边平行且相等的四边形是平行四边形;
3、两组对边分别相等的四边形是平行四边形;
4、两组对角分别相等的四边形是平行四边形(两组对边平行判定);
5、对角线互相平分的四边形是平行四边形。
补充:条件3仅在平面四边形时成立,如果不是平面四边形,即使是两组对边分别相等的四边形,也不是平行四边形。
扩展资料:
性质:
1、矩形具有平行四边形的一切性质;
2、矩形的对角线相等;
3、矩形的四个角都是90度;
4、矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点。
参考资料来源:百度百科—平行四边形
是的 。
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。 平行四边形的相对或相对的侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。
两组对边分别平行的四边形叫做平行四边形。
1、平行四边形属于平面图形。
2、平行四边形属于四边形。
3、平行四边形属于中心对称图形。
扩展资料
1726年,约翰·伯努利在写给瓦里翁的信中提出力的平行四边形原理可以用于静力学。他用虚功原理分析在一个力学系统中力矩做功的问题,指出在任何力的平衡的情况下,无论这些力是直接地或是间接的用来支持相互平衡。
法国的潘索也对平行四边形定则进行了数学证明并首先引入“刚体”、“力偶”等概念,进一步将静力学用于刚体及机器结构的分析上。直到十九世纪乃至二十世纪初,包括拉普拉斯、茹可夫斯基等众多力学家在内,都花了许多时间来对此进行争论。
参考资料来源:百度百科-平行四边形定则
参考资料来源:百度百科-平行四边形
平行四边形对角相等,长方形四个角都是直角。