3个回答
展开全部
正弦二倍角公式:
sin2α = 2cosαsinα 推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA 拓展公式:sin2A=2sinAcosA=2tanAcos^2(A)=2tanA/[1+tan^2A] 1+sin2A=(sinA+cosA)^2
余弦二倍角公式:
余弦二倍角公式有三组表示形式,三组形式等价: 1.Cos2a=Cos^2(a)-Sin^2(a)=[1-tan^2(a)]/[1+tan^2(a)] 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2(A)-sin^2(A)=2cos^2(A)-1 =1-2sin^2(A) 注意:因同角公式sin^2(A)+cos^2(A)=1,sin^2(A)=1-cos^2(A) 将式子代入cos^2(A)-sin^2(A),所以等于2cos^2(A)-1
正切二倍角公式:
tan2α=2tanα/[1-tan^2(α)] 推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan^2(A)]
降幂公式(半角公式):
cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2 tanA^2=[1-cos2A]/[1+cos2A] 变式: sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4); cos2α=2sin(α+π/4)cos(α+π/4)
sin2α = 2cosαsinα 推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA 拓展公式:sin2A=2sinAcosA=2tanAcos^2(A)=2tanA/[1+tan^2A] 1+sin2A=(sinA+cosA)^2
余弦二倍角公式:
余弦二倍角公式有三组表示形式,三组形式等价: 1.Cos2a=Cos^2(a)-Sin^2(a)=[1-tan^2(a)]/[1+tan^2(a)] 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2(A)-sin^2(A)=2cos^2(A)-1 =1-2sin^2(A) 注意:因同角公式sin^2(A)+cos^2(A)=1,sin^2(A)=1-cos^2(A) 将式子代入cos^2(A)-sin^2(A),所以等于2cos^2(A)-1
正切二倍角公式:
tan2α=2tanα/[1-tan^2(α)] 推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan^2(A)]
降幂公式(半角公式):
cosA^2=[1+cos2A]/2 sinA^2=[1-cos2A]/2 tanA^2=[1-cos2A]/[1+cos2A] 变式: sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4); cos2α=2sin(α+π/4)cos(α+π/4)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你去百度查一下棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) ,将n=1/3代入该公式就,然后把你有的数值代进去就能求了,该公式可以求N倍角公式,采纳了吧
更多追问追答
追问
i 是虚数?
追答
对,是虚数单位
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
sin(x+y+z)
=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz
=cosxcosycosz(tanx+tany+tanz-tanxtanytanz)
cos(x+y+z)
=cosxcosycosz-cosxsinysinz-sinxcosysinz-sinxsinycosz
=cosxcosycosz(1-tanxtany-tanytanz-tanztanx)
tan(x+y+z)
=[tanx+tany+tanz-tanxtanytanz]/[1-tanxtany-tanytanz-tanztanx]
cot(x+y+z)
=[cotxcotycotz-cotx-coty-cotz]/[cotxcoty+cotycotz+cotzcotx-1]
已知sin(x+y+z)
=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz
所以
sin(x+y-z)
=sinxcosycosz+cosxsinycosz-cosxcosysinz+sinxsinysinz
sin(x-y+z)
=sinxcosycosz-cosxsinycosz+cosxcosysinz+sinxsinysinz
sin(-x+y+z)
=-sinxcosycosz+cosxsinycosz+cosxcosysinz+sinxsinysinz
sin(x+y+z)
=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz
所以4sinxsinysinz =sin(x+y-z) +sin(x-y+z) +sin(-x+y+z) -sin(x+y+z)
sin(x-y-z)
=sinxcosycosz-cosxsinycosz-cosxcosysinz-sinxsinysinz
sin(-x-y+z)
=-sinxcosycosz-cosxsinycosz+cosxcosysinz-sinxsinysinz
sin(-x+y+z)
=-sinxcosycosz+cosxsinycosz+cosxcosysinz+sinxsinysinz
sin(x+y+z)
=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz
全相加
2cosxcosysinz-2sinxsinysinz =sin(x-y-z) +sin(-x-y+z) +sin(-x+y+z) +sin(x+y+z)
再利用4sinxsinysinz =sin(x+y-z) +sin(x-y+z) +sin(-x+y+z) -sin(x+y+z)
得到4cosxcosysinz= +sin(-x-y+z) +sin(-x+y+z) +sin(x+y-z) +sin(x-y+z)
其他自己仿照这2个,推理吧!
=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz
=cosxcosycosz(tanx+tany+tanz-tanxtanytanz)
cos(x+y+z)
=cosxcosycosz-cosxsinysinz-sinxcosysinz-sinxsinycosz
=cosxcosycosz(1-tanxtany-tanytanz-tanztanx)
tan(x+y+z)
=[tanx+tany+tanz-tanxtanytanz]/[1-tanxtany-tanytanz-tanztanx]
cot(x+y+z)
=[cotxcotycotz-cotx-coty-cotz]/[cotxcoty+cotycotz+cotzcotx-1]
已知sin(x+y+z)
=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz
所以
sin(x+y-z)
=sinxcosycosz+cosxsinycosz-cosxcosysinz+sinxsinysinz
sin(x-y+z)
=sinxcosycosz-cosxsinycosz+cosxcosysinz+sinxsinysinz
sin(-x+y+z)
=-sinxcosycosz+cosxsinycosz+cosxcosysinz+sinxsinysinz
sin(x+y+z)
=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz
所以4sinxsinysinz =sin(x+y-z) +sin(x-y+z) +sin(-x+y+z) -sin(x+y+z)
sin(x-y-z)
=sinxcosycosz-cosxsinycosz-cosxcosysinz-sinxsinysinz
sin(-x-y+z)
=-sinxcosycosz-cosxsinycosz+cosxcosysinz-sinxsinysinz
sin(-x+y+z)
=-sinxcosycosz+cosxsinycosz+cosxcosysinz+sinxsinysinz
sin(x+y+z)
=sinxcosycosz+cosxsinycosz+cosxcosysinz-sinxsinysinz
全相加
2cosxcosysinz-2sinxsinysinz =sin(x-y-z) +sin(-x-y+z) +sin(-x+y+z) +sin(x+y+z)
再利用4sinxsinysinz =sin(x+y-z) +sin(x-y+z) +sin(-x+y+z) -sin(x+y+z)
得到4cosxcosysinz= +sin(-x-y+z) +sin(-x+y+z) +sin(x+y-z) +sin(x-y+z)
其他自己仿照这2个,推理吧!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询