急啊,这四题怎么做啊😚 100
1.
(1)
∫(2x+3)/(x²-7x+10)dx
=⅓∫[13/(x-5) -7/(x-2)]dx
=⅓[13ln|x-5|-7ln|x-2|] +C
(2)
∫1/(x³-1)dx
=(1/6)∫[2/(x-1) -(2x+1)/(x²+x+1) -3/(x²+x+1)]dx
=⅓∫1/(x-1)dx -(1/6)∫(2x+1)/(x²+x+1)dx -(√3/3)∫[1/[1+(2x/√3 + 1/√3)²]d(2x/√3)
=⅓ln|x-1| -(1/6)ln|x²+x+1| -(√3/3)arcan[⅓(2√3x + √3)] +C
2.
(1)
令√(x+1)=t,则x=t²-1
∫[√(x+1)-1]/[√(x+1)+1]dx
=∫(t-1)/(t+1)d(t²-1)
=∫2t(t-1)/(t+1)dt
=∫(2t²+2t-4t-4+4)/(t+1)dt
=∫[2t -4 +4/(t+1)]dt
=t²-4t+4ln|t+1| +C₁
=x+1-4√(x+1) +4ln|√(x+1)+1| +C₁
=x-4√(x+1) +4ln|√(x+1)+1| +C
(2)
令⁶√x=t,则√x=t³,³√x=t²,x=t⁶
∫³√x/[x(√x+³√x)]dx
=∫t²/[t⁶·(t³+t²)]d(t⁶)
=6∫1/[(t²+t)]dt
=6∫[1/t -1/(t+1)]dt
=6(ln|t|-ln|t+1|) +C
=6(ln|⁶√x|-ln|⁶√x +1|) +C