数学题 初二下册
如图,在△ABC中,∠ACB=60°,AD、BE分别为BC、AC边上的高,H、F分别是ED、AB边上的中点,若AB=8,试判断FH与ED的位置关系,并求FH的长要第二问的...
如图,在△ABC中,∠ACB=60°,AD、BE分别为BC、AC边上的高,H、F分别是ED、AB边上的中点,若AB=8,试判断FH与ED的位置关系,并求FH的长
要第二问的答案 展开
要第二问的答案 展开
1个回答
展开全部
解:
FH⊥DE
理由:因为AD,BE分别为BC,AC边上的高,F为AB的中点
所以DF、EF分别为直角△ABD和△ABE斜边上的中线
所以DF=AB/2,EF=AB/2
所以DF=EF=4
因为H是DE的中点
所以根据“三线合一”性质知:FH⊥DE
因为∠C=60°
所以∠DAC=30°
所以DC/AC=1/2
同理EC/BC=1/2
所以DC/AC=EC/BC
因为∠ACB=∠DCE=60°
所以△CDE∽△CAB
所以DE/AB=DC/AC=1/2
因为AB=8
所以DE=4
所以DH=EH=2
所以根据勾股定理得FH=2√3
FH⊥DE
理由:因为AD,BE分别为BC,AC边上的高,F为AB的中点
所以DF、EF分别为直角△ABD和△ABE斜边上的中线
所以DF=AB/2,EF=AB/2
所以DF=EF=4
因为H是DE的中点
所以根据“三线合一”性质知:FH⊥DE
因为∠C=60°
所以∠DAC=30°
所以DC/AC=1/2
同理EC/BC=1/2
所以DC/AC=EC/BC
因为∠ACB=∠DCE=60°
所以△CDE∽△CAB
所以DE/AB=DC/AC=1/2
因为AB=8
所以DE=4
所以DH=EH=2
所以根据勾股定理得FH=2√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询