如图,在边长为2A的菱形ABCD中,∠DAB=60°,E是AD上不同于A,D两点的一动点

 我来答
匿名用户
2011-05-18
展开全部
解:(1)连接BD
∵∠DAB=60°
∴△ABD是等边三角形
∴AB=DB
又∵AE+CF=m
∴AE=DF
在△ABE和△DBF中
AB=BD
∠A=∠BDF
AE=DF
∴△ABE≌△DBF(SAS)
∴BE=BF,∠ABE=∠DBF
∴∠EBF=ABD=60°
∴△BEF是等边三角形.
(2)当BE⊥AD时面积最小,∵BE⊥DA∠A=60°
∴∠AEB=90°∴∠EBA=30°
∴EA=1/2AB
∴AB=2a
同理BC=2a
∵CF=2a
∴BF=根号3
∵△BEF是等边三角形
∴周长为3倍根号3
_Dew__
2011-05-15 · 超过11用户采纳过TA的回答
知道答主
回答量:32
采纳率:0%
帮助的人:22.5万
展开全部
解:(1)连接BD
∵∠DAB=60°
∴△ABD是等边三角形
∴AB=DB
又∵AE+CF=m
∴AE=DF
在△ABE和△DBF中
∴△ABE≌△DBF(SAS)
∴BE=BF,∠ABE=∠DBF
∴∠EBF=ABD=60°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
abc123258369
2011-05-29
知道答主
回答量:12
采纳率:0%
帮助的人:0
展开全部
解:(1)连接BD
∵∠DAB=60°
∴△ABD是等边三角形
∴AB=DB
又∵AE+CF=m
∴AE=DF
在△ABE和△DBF中
AB=BD
∠A=∠BDF
AE=DF
∴△ABE≌△DBF(SAS)
∴BE=BF,∠ABE=∠DBF
∴∠EBF=ABD=60°
∴△BEF是等边三角形.
(2)当BE⊥AD时面积最小,∵BE⊥DA∠A=60°
∴∠AEB=90°∴∠EBA=30°
∴EA=1/2AB
∴AB=2a
同理BC=2a
∵CF=a
∴BF=(根号3)a
∵△BEF是等边三角形
∴周长为3倍(根号3) a
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式