
若sin(A+B)=4/5,sin(A-B)=-3/5,A+B属于(π/2,π)A-B属于(-π/2,0)求sin2B
展开全部
∵-π/2<a-b<0,π/2<a+b<π
sin(a+b)=4/5,sin(a-b)=-3/5,
∴ cos(a+b)=-√[1-sin²(a+b)]=-3/5,
con(a-b)=√[1-sin²(a-b)]=4/5,
故 sin2b=sin[(a+b)-(a-b)]
=sin(a+b)cos(a-b)-cos(a+b)sin(a-b)
=(4/5)(4/5)-(-3/5)(-3/5)
=7/25
sin(a+b)=4/5,sin(a-b)=-3/5,
∴ cos(a+b)=-√[1-sin²(a+b)]=-3/5,
con(a-b)=√[1-sin²(a-b)]=4/5,
故 sin2b=sin[(a+b)-(a-b)]
=sin(a+b)cos(a-b)-cos(a+b)sin(a-b)
=(4/5)(4/5)-(-3/5)(-3/5)
=7/25
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询