rpm和g之间的单位怎么换算
在3cm的旋转半径下,每300xg的离心力的速度约为2990rpm,当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“F”由下式定义,即:F=m•a=m•ω2r 。
通常离心力常用地球引力的倍数来表示,因而称为相对离心力“RCF”。或者用数字乘“g”来表示,例如25000×g,则表示相对离心力为25000。
相对离心力是指在离心场中,作用于颗粒的离心力相当于地球重力的倍数,单位是重力加速度“g”(980cm/sec2),此时“RCF”相对离心力可用下式计算:RCF=1.119×10-5×(rpm)2r,只要给出旋转半径r,则RCF和rpm之间可以相互换算。
但是由于转头的形状及结构的差异,使每台离心机的离心管,从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算是规定旋转半径均用平均半径“rav”代替:rav=(rmin+rmax)/2
一般情况下,低速离心时常以转速“rpm”来表示,高速离心时则以“g”表示。计算颗粒的相对离心力时,应注意离心管与旋转轴中心的距离“r”不同,即沉降颗粒在离心管中所处位置不同,则所受离心力也不同。
扩展资料;
离心原理
当含有细小颗粒的悬浮液静置不动时,由于重力场的作用使得悬浮的颗粒逐渐下沉。粒子越重,下沉越快,反之密度比液体小的粒子就会上浮。微粒在重力场下移动的速度与微粒的大小、形态和密度有关,并且又与重力场的强度及液体的粘度有关。象红血球大小的颗粒,直径为数微米,就可以在通常重力作用下观察到它们的沉降过程。
此外,物质在介质中沉降时还伴随有扩散现象。扩散是无条件的绝对的。扩散与物质的质量成反比,颗粒越小扩散越严重。而沉降是相对的,有条件的,要受到外力才能运动。沉降与物体重量成正比,颗粒越大沉降越快。
对小于几微米的微粒如病毒或蛋白质等,它们在溶液中成胶体或半胶体状态,仅仅利用重力是不可能观察到沉降过程的。因为颗粒越小沉降越慢,而扩散现象则越严重。所以需要利用离心机产生强大的离心力,才能迫使这些微粒克服扩散产生沉降运动。
离心就是利用离心机转子高速旋转产生的强大的离心力,加快液体中颗粒的沉降速度,把样品中不同沉降系数和浮力密度的物质分离开。
离心力(g)和转速(rpm)之间的换算
离心力G和转速RPM之间的换算其换算公式如下:
G=1.11×10^(-5)×R×(rpm)^2
其中,G为离心力,一般以g(重力加速度)的倍数来表示。
10^(-5) 即10的负五次方,(rpm)^2转速的平方,R为半径,单位为厘米。
例如,离心半径为10厘米,转速为8000RPM,其离心力为:
G=1.11*10(-5)*10*(8000)2=7104
即离心力为7104g.
而当离心力为8000g 时,其转速应为:8489即约为8500rpm。
参考资料来源;百度百科-离心机
离心机默认离心能力用rpm表示。而一般trizol的说明书对离心的要求用rcf表示。
rpm(revolution per minute)为离心机每分钟的转数(单位:周/分钟);
RCF(relative centrifugal force)为相对离心力,以地心引力即重力加速度的倍数来表示,一般用×g表示。
r为离心机转子半径(单位:米)。
两者转换关系如下:
rcf=0.0011×r×rpm^2
rpm=(909×rcf÷r)^0.5
以eppendorf centrifuge 5810r,F45-30-11转子为例. max rpm=1400r/min, r=9.5cm.trizol说明书要求抽提RNA时rcf=12000×g.
则所需rpm=(12000×909÷0.095)^0.5=10715r/min.
在3cm的旋转半径下,每300xg的离心力的速度约为2990rpm,当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“F”由下式定义,即:F=m•a=m•ω2r 。
通常离心力常用地球引力的倍数来表示,因而称为相对离心力“RCF”。或者用数字乘“g”来表示,例如25000×g,则表示相对离心力为25000。
相对离心力是指在离心场中,作用于颗粒的离心力相当于地球重力的倍数,单位是重力加速度“g”(980cm/sec2),此时“RCF”相对离心力可用下式计算:RCF=1.119×10-5×(rpm)2r,只要给出旋转半径r,则RCF和rpm之间可以相互换算。
但是由于转头的形状及结构的差异,使每台离心机的离心管,从管口至管底的各点与旋转轴之间的距离是不一样的,所以在计算是规定旋转半径均用平均半径“rav”代替:rav=(rmin+rmax)/2
一般情况下,低速离心时常以转速“rpm”来表示,高速离心时则以“g”表示。计算颗粒的相对离心力时,应注意离心管与旋转轴中心的距离“r”不同,即沉降颗粒在离心管中所处位置不同,则所受离心力也不同。