求解答两个未知数

 我来答
律暖忙9865
2017-02-15 · 超过49用户采纳过TA的回答
知道答主
回答量:64
采纳率:0%
帮助的人:24.1万
展开全部
对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2)
这句话的意思是:g(x)在[0,1]上的最大值要大于f(x)在(0,+∞)上的最大值。
g(x)是确定的,易得g(x)在[0,1]上的最大值为g(0)=2;
所以,f(x)在(0,+∞)上的最大值要小于2,
即f(x)<2对x>0恒成立
ax+lnx<2
ax<2-lnx
a<(2-lnx)/x
令h(x)=(2-lnx)/x
则a<h(x)min
h'(x)=(-1-2+lnx)/x²=(lnx-3)/x²
当0<x<e³时,h'(x)<0,当x>e³时,h'(x)>0
则h(x)在(0,e³)上递减,在(e³,+∞)上递增;
所以,h(x)的最小值为h(e³)=(2-lne³)/e³=-1/e³
所以,a的取值范围是:a<-1/e³
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式