matlab多元非线性 5
y=1.314x1+0.882x2=0.501x3+0.339x4+0.288x5+0.351x6+0.689x7-0.245(x1^2+x2^2+x3^2+x4^2+x...
y=1.314x1+0.882x2=0.501x3+0.339x4+0.288x5+0.351x6+0.689x7-0.245(x1^2+x2^2+x3^2+x4^2+x5^2+x62+x7^2)
x1+x2+x3+..+x7<=4.2
用matlab怎么求y最小值情况下的各x的值啊 展开
x1+x2+x3+..+x7<=4.2
用matlab怎么求y最小值情况下的各x的值啊 展开
1个回答
展开全部
如果不限定x1-x7大于0
y没有最小值
限定x1-x7大于等于0 y等于0,其他的x约为0
y=@(x)1.314*x(1)+0.882*x(2)+0.501*x(3)+0.339*x(4)+0.288*x(5)+0.351*x(6)+0.689*x(7)-0.245*(x(1).^2+x(2).^2+x(3).^2+x(4).^2+x(5).^2+x(6).^2+x(7).^2);
>> [x,feval,flag]=fmincon(y,[1 1 0 0 0 0 0],[1 1 1 1 1 1 1 ],[4.2],[],[],[],[])
Warning: Trust-region-reflective algorithm does not solve this type of problem, using active-set
algorithm. You could also try the interior-point or sqp algorithms: set the Algorithm option to
'interior-point' or 'sqp' and rerun. For more help, see Choosing the Algorithm in the
documentation.
> In fmincon at 472
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints were satisfied to within the default value of the constraint tolerance.
<stopping criteria details>
No active inequalities.
x =
1.0e+019 *
-3.3332 -0.7420 -1.3959 -0.4237 -0.1147 -0.4953 -2.5247
feval =
-5.0033e+038
flag =
1
>> [x,feval,flag]=fmincon(y,[1 1 0 0 0 0 0],[1 1 1 1 1 1 1 ],[4.2],[],[],[0 0 0 0 0 0 0],[])
Warning: Trust-region-reflective algorithm does not solve this type of problem, using active-set
algorithm. You could also try the interior-point or sqp algorithms: set the Algorithm option to
'interior-point' or 'sqp' and rerun. For more help, see Choosing the Algorithm in the
documentation.
> In fmincon at 472
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints were satisfied to within the default value of the constraint tolerance.
<stopping criteria details>
Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin
1
2
3
4
5
6
7
x =
1.0e-016 *
0.2776 0 0 0 0 0 0
feval =
3.6471e-017
flag =
1
y没有最小值
限定x1-x7大于等于0 y等于0,其他的x约为0
y=@(x)1.314*x(1)+0.882*x(2)+0.501*x(3)+0.339*x(4)+0.288*x(5)+0.351*x(6)+0.689*x(7)-0.245*(x(1).^2+x(2).^2+x(3).^2+x(4).^2+x(5).^2+x(6).^2+x(7).^2);
>> [x,feval,flag]=fmincon(y,[1 1 0 0 0 0 0],[1 1 1 1 1 1 1 ],[4.2],[],[],[],[])
Warning: Trust-region-reflective algorithm does not solve this type of problem, using active-set
algorithm. You could also try the interior-point or sqp algorithms: set the Algorithm option to
'interior-point' or 'sqp' and rerun. For more help, see Choosing the Algorithm in the
documentation.
> In fmincon at 472
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints were satisfied to within the default value of the constraint tolerance.
<stopping criteria details>
No active inequalities.
x =
1.0e+019 *
-3.3332 -0.7420 -1.3959 -0.4237 -0.1147 -0.4953 -2.5247
feval =
-5.0033e+038
flag =
1
>> [x,feval,flag]=fmincon(y,[1 1 0 0 0 0 0],[1 1 1 1 1 1 1 ],[4.2],[],[],[0 0 0 0 0 0 0],[])
Warning: Trust-region-reflective algorithm does not solve this type of problem, using active-set
algorithm. You could also try the interior-point or sqp algorithms: set the Algorithm option to
'interior-point' or 'sqp' and rerun. For more help, see Choosing the Algorithm in the
documentation.
> In fmincon at 472
Local minimum found that satisfies the constraints.
Optimization completed because the objective function is non-decreasing in
feasible directions, to within the default value of the function tolerance,
and constraints were satisfied to within the default value of the constraint tolerance.
<stopping criteria details>
Active inequalities (to within options.TolCon = 1e-006):
lower upper ineqlin ineqnonlin
1
2
3
4
5
6
7
x =
1.0e-016 *
0.2776 0 0 0 0 0 0
feval =
3.6471e-017
flag =
1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询