已知a>0,a不等于1,m>n>0,设A=a^m+a^-m,B=a^n+a^-n,试比较A与B的大小
1个回答
展开全部
A-B=a^m-a^n+1/a^m-1/a^n
通分
=(a^2m*a^n-a^m*a^2m+a^n-a^m)/a^m*a^n
显然分母a^m*a^n>0
分子=a^2m*a^n-a^m*a^2m+a^n-a^m
=a^m*a^n(a^m-a^n)-(a^m-a^n)
=(a^m-a^n)(a^m*a^n-1)
若0<a<1,a^x是减函数
m>n,所以a^m-a^n<0
m>0,0<a^m<a^0=1
同理0<a^n<1,所以a^m*a^n<1,a^m*a^n-1<0
所以分子大于0
所以(a^2m*a^n-a^m*a^2m+a^n-a^m)/a^m*a^n>0
A>B
若a>1,a^x是增函数
m>n,所以a^m-a^n>0
m>0,a^m>a^0=1
同理a^n>1,所以a^m*a^n>1,a^m*a^n-1>0
所以分子大于0
也有A>B
综上
A>B
通分
=(a^2m*a^n-a^m*a^2m+a^n-a^m)/a^m*a^n
显然分母a^m*a^n>0
分子=a^2m*a^n-a^m*a^2m+a^n-a^m
=a^m*a^n(a^m-a^n)-(a^m-a^n)
=(a^m-a^n)(a^m*a^n-1)
若0<a<1,a^x是减函数
m>n,所以a^m-a^n<0
m>0,0<a^m<a^0=1
同理0<a^n<1,所以a^m*a^n<1,a^m*a^n-1<0
所以分子大于0
所以(a^2m*a^n-a^m*a^2m+a^n-a^m)/a^m*a^n>0
A>B
若a>1,a^x是增函数
m>n,所以a^m-a^n>0
m>0,a^m>a^0=1
同理a^n>1,所以a^m*a^n>1,a^m*a^n-1>0
所以分子大于0
也有A>B
综上
A>B
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询