矩阵的秩,若A可逆,则r(AB)=r(B), r(BA)=r(B)。那么若B可逆r(AB)=
结果为:r(AB)=r(B)
解题过程如下:
当A为方阵时,A可逆
当A非方阵时,A列满秩
当A为方阵且A可逆时,A可以表示为初等矩阵的乘积 P1P2...Ps
AB = P1P2..PsB 相当于对矩阵B实施一系列初等行变换
而初等变换不改变矩阵的秩
∴ r(AB) = r(P1P2..PsB) = r(B)、
扩展资料
求矩阵的秩方法:
矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。
在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。
在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。
A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。若A中至少有一个r阶子式不等于零,且在r<min(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。
由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的,即rank(A)=rank(AT)。
因为A可逆,所以r(A)=n,又因为r(AB)<=min(r(A),r(B))=min(n,r(B))【重要定理一】;
①假设r(B)<n,则r(AB)<=r(B),又因为r(AB)>=r(A)+r(B)-n【重要定理二】所以,r(AB)>=n+r(B)-n=r(B);根据夹逼准则,r(AB)=r(B);
②假定r(B)>n.则r(AB)<=n,而又因为r(AB)>=r(B)>n,则矛盾;
③假定r(B)=n.显然,r(AB)=r(B);
2017-06-08
???=2???