帮忙翻译一下,不胜感激谢谢谢谢
Thispaperasksanewquestion:howcanwecontrolthecollectivebehaviorofself-organizedmulti-a...
This paper asks a new question: how can we control the collective behavior of self-organized multi-agent systems? We try to answer the question by proposing a new notion called ‘Soft Control’, which keeps the local rule of the existing agents in the system. We show the feasibility of soft control by a case study. Consider the simple but typical distributed multi-agent model proposed by Vicsek etal. for flocking of birds: each agent moves with the same speed but with different headings which are updated using a local rule based on the average of its own heading and the headings of its neighbors.Most studies of this model are about the self-organized collective behavior, such as synchronization of headings. We want to intervene in the collective behavior (headings) of the group by soft control. A specified method is to add a special agent, called a ‘Shill’, which can be controlled by us but is treated as an ordinary agent by other agents. We construct a control law for the shill so that it can synchronize
the whole group to an objective heading. This control law is proved to be effective analytically and numerically. Note that soft control is different from the approach of distributed control. It is a natural way to intervene in the distributed systems. It may bring out many interesting issues and challenges on the control of complex systems.
Collective behavior is the high level (macroscopic) property of a self-organized system which consists of a large number of (microscopic) individuals (agents). Examples are synchronization, aggregation, phase transition, pattern formation, swarm intelligence, fashion, etc. People found this kind of phenomena in many systems, such as flocking of birds, schools of fish, cooperation in ant colonies, panic of crowds[1], norms in economic systems[2], etc. Without any question, collective behavior is one of the fundamental and difficult topics of the study of complex systems.We classify the research on collective behavior into three categories.
Given the local rules of agents, what is the collective behavior of the overall system?Many people have been working on this category which is about the mechanism of how
collective behavior emerges from multi-agent systems. “More is different”[3]. The physicists have applied theory of statistical physics to explored some simple models, from the Ideal Gas model, Spin Glasses, to the panic model and network dynamics.
Given the desired collective behavior, what are the local rules for agents?
Some people work on this category. One typical example is Swarm Intelligence. Since the high level function of the overall system can be more than the sum of all individuals, how do we construct robust intelligence by a large number of locally interacting simple agents? An ant is simple and often moves randomly. But a colony of ants can efficiently find the shortest path from their nest to a food source. 展开
the whole group to an objective heading. This control law is proved to be effective analytically and numerically. Note that soft control is different from the approach of distributed control. It is a natural way to intervene in the distributed systems. It may bring out many interesting issues and challenges on the control of complex systems.
Collective behavior is the high level (macroscopic) property of a self-organized system which consists of a large number of (microscopic) individuals (agents). Examples are synchronization, aggregation, phase transition, pattern formation, swarm intelligence, fashion, etc. People found this kind of phenomena in many systems, such as flocking of birds, schools of fish, cooperation in ant colonies, panic of crowds[1], norms in economic systems[2], etc. Without any question, collective behavior is one of the fundamental and difficult topics of the study of complex systems.We classify the research on collective behavior into three categories.
Given the local rules of agents, what is the collective behavior of the overall system?Many people have been working on this category which is about the mechanism of how
collective behavior emerges from multi-agent systems. “More is different”[3]. The physicists have applied theory of statistical physics to explored some simple models, from the Ideal Gas model, Spin Glasses, to the panic model and network dynamics.
Given the desired collective behavior, what are the local rules for agents?
Some people work on this category. One typical example is Swarm Intelligence. Since the high level function of the overall system can be more than the sum of all individuals, how do we construct robust intelligence by a large number of locally interacting simple agents? An ant is simple and often moves randomly. But a colony of ants can efficiently find the shortest path from their nest to a food source. 展开
展开全部
本文问了一个新的问题:我们如何能够控制自组织的多智能体系统的集体行为?我们试图提出一个回答问题的新概念称为'软管理',它保留了系统中的现有代理当地规则。我们展示了软控制案例研究的可行性。考虑简单但典型的分布式多智能体模型Vicsek埃塔尔建议。为植绒鸟:每个代理以同样的速度移动,但与该更新使用本地规则关于其自己的标题平均邻国的标题为不同的标题。这种模式对大多数研究都是自发组织的集体行为,如标题的同步。我们要在集体行为干预本集团(标题)的软控制。指定的方法是添加一个特殊的代理,叫做'抬价',它可以控制我们,但作为一个普通的其他代理人代理处理。我们构造了一个控制律抬价,以便它可以同步
整个集团的一个客观的标题。这种控制法被证明是有效的解析和数值。请注意,软控制是从分布式控制方法不同。这是一种自然的方式来干预分布式系统。它可能带出在复杂系统的控制了许多有趣的问题和挑战。
集体行为是高层次(宏观)的自组织系统,它由一对(微观)个人(代理人)大型数字组成的财产。例子是同步,聚合,相变,格局的形成,群体智能,时尚等人发现这种现象在许多系统中,如鸟之群体,鱼类,蚁群合作,人群惊慌学校[1],善良在没有任何经济制度规范问题[2]等,集体行为是复杂的集体行为systems.We分类分为三类研究性学习的根本利益和困难的课题之一。
由于代理商的地方性法规,什么是整体系统的集体行为?许多人已经在这一类是关于如何工作机制
集体行为出现从多代理系统。 “更多的是不同的”[3]。物理学家已经应用统计物理理论,探索了一些简单的模型,从理想气体模型,自旋玻璃,在恐慌模型和网络动态。
由于所需的集体行为,什么是代理商的地方性法规?
有些人这方面的工作类别。一个典型的例子是群体智能。由于整个系统的高层次的功能可以比所有个人的总和,我们如何建构一个本地代理大量相互作用的简单可靠的情报?一只蚂蚁,往往是简单随意移动。但蚂蚁殖民地可以有效地找到自己的巢中最短路径的食物来源。
给分哦!哈哈!
整个集团的一个客观的标题。这种控制法被证明是有效的解析和数值。请注意,软控制是从分布式控制方法不同。这是一种自然的方式来干预分布式系统。它可能带出在复杂系统的控制了许多有趣的问题和挑战。
集体行为是高层次(宏观)的自组织系统,它由一对(微观)个人(代理人)大型数字组成的财产。例子是同步,聚合,相变,格局的形成,群体智能,时尚等人发现这种现象在许多系统中,如鸟之群体,鱼类,蚁群合作,人群惊慌学校[1],善良在没有任何经济制度规范问题[2]等,集体行为是复杂的集体行为systems.We分类分为三类研究性学习的根本利益和困难的课题之一。
由于代理商的地方性法规,什么是整体系统的集体行为?许多人已经在这一类是关于如何工作机制
集体行为出现从多代理系统。 “更多的是不同的”[3]。物理学家已经应用统计物理理论,探索了一些简单的模型,从理想气体模型,自旋玻璃,在恐慌模型和网络动态。
由于所需的集体行为,什么是代理商的地方性法规?
有些人这方面的工作类别。一个典型的例子是群体智能。由于整个系统的高层次的功能可以比所有个人的总和,我们如何建构一个本地代理大量相互作用的简单可靠的情报?一只蚂蚁,往往是简单随意移动。但蚂蚁殖民地可以有效地找到自己的巢中最短路径的食物来源。
给分哦!哈哈!
追问
请问第一句翻译的不错,但是后面是google的对不对??请好好的翻译一下,那肯定给你分的。谢谢
展开全部
This paper asks a new question: how can we control the collective behavior of self-organized multi-agent systems? We try to answer the question by proposing a new notion called ‘Soft Control’, which keeps the local rule of the existing agents in the system. We show the feasibility of soft control by a case study. Consider the simple but typical distributed multi-agent model proposed by Vicsek etal. for flocking of birds: each agent moves with the same speed but with different headings which are updated using a local rule based on the average of its own heading and the headings of its neighbors.Most studies of this model are about the self-organized collective behavior, such as synchronization of headings. We want to intervene in the collective behavior (headings) of the group by soft control. A specified method is to add a special agent, called a ‘Shill’, which can be controlled by us but is treated as an ordinary agent by other agents. We construct a control law for the shill so that it can synchronize
the whole group to an objective heading. This control law is proved to be effective analytically and numerically. Note that soft control is different from the approach of distributed control. It is a natural way to intervene in the distributed systems. It may bring out many interesting issues and challenges on the control of complex systems.
Collective behavior is the high level (macroscopic) property of a self-organized system which consists of a large number of (microscopic) individuals (agents). Examples are synchronization, aggregation, phase transition, pattern formation, swarm intelligence, fashion, etc. People found this kind of phenomena in many systems, such as flocking of birds, schools of fish, cooperation in ant colonies, panic of crowds[1], norms in economic systems[2], etc. Without any question, collective behavior is one of the fundamental and difficult topics of the study of complex systems.We classify the research on collective behavior into three categories.
Given the local rules of agents, what is the collective behavior of the overall system?Many people have been working on this category which is about the mechanism of how
collective behavior emerges from multi-agent systems. “More is different”[3]. The physicists have applied theory of statistical physics to explored some simple models, from the Ideal Gas model, Spin Glasses, to the panic model and network dynamics.
Given the desired collective behavior, what are the local rules for agents?
Some people work on this category. One typical example is Swarm Intelligence. Since the high level function of the overall system can be more than the sum of all individuals, how do we construct robust intelligence by a large number of locally interacting simple agents? An ant is simple and often moves randomly. But a colony of ants can efficiently find the shortest path from their nest to a food source我不会
the whole group to an objective heading. This control law is proved to be effective analytically and numerically. Note that soft control is different from the approach of distributed control. It is a natural way to intervene in the distributed systems. It may bring out many interesting issues and challenges on the control of complex systems.
Collective behavior is the high level (macroscopic) property of a self-organized system which consists of a large number of (microscopic) individuals (agents). Examples are synchronization, aggregation, phase transition, pattern formation, swarm intelligence, fashion, etc. People found this kind of phenomena in many systems, such as flocking of birds, schools of fish, cooperation in ant colonies, panic of crowds[1], norms in economic systems[2], etc. Without any question, collective behavior is one of the fundamental and difficult topics of the study of complex systems.We classify the research on collective behavior into three categories.
Given the local rules of agents, what is the collective behavior of the overall system?Many people have been working on this category which is about the mechanism of how
collective behavior emerges from multi-agent systems. “More is different”[3]. The physicists have applied theory of statistical physics to explored some simple models, from the Ideal Gas model, Spin Glasses, to the panic model and network dynamics.
Given the desired collective behavior, what are the local rules for agents?
Some people work on this category. One typical example is Swarm Intelligence. Since the high level function of the overall system can be more than the sum of all individuals, how do we construct robust intelligence by a large number of locally interacting simple agents? An ant is simple and often moves randomly. But a colony of ants can efficiently find the shortest path from their nest to a food source我不会
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
本文问了一个新的问题:我们如何能够控制自组织的多智能体系统的集体行为?我们试图提出一个回答问题的新概念称为'软管理',它保留了系统中的现有代理当地规则。我们展示了软控制案例研究的可行性。考虑简单但典型的分布式多智能体模型Vicsek埃塔尔建议。对鸟类植绒:以同样的速度,但与该更新使用本地规则的基础上,其自己的标题和其neighbors.Most平均这个模型的研究不同的标题标题每个代理的动作是对自组织的集体行为,如标题同步。我们要在集体行为干预本集团(标题)的软控制。指定的方法是添加一个特殊的代理,叫做'抬价',它可以控制我们,但作为一个普通的其他代理人代理处理。我们构造了一个控制律抬价,以便它可以同步
整个集团的一个客观的标题。这种控制法被证明是有效的解析和数值。请注意,软控制是从分布式控制方法不同。这是一种自然的方式来干预分布式系统。它可能带出在复杂系统的控制了许多有趣的问题和挑战。
集体行为是高层次(宏观)的自组织系统,它由一对(微观)个人(代理人)大型数字组成的财产。例子是同步,聚合,相变,格局的形成,群体智能,时尚等人发现这种现象在许多系统中,如鸟之群体,鱼类,蚁群合作,人群惊慌学校[1],善良在没有任何经济制度规范问题[2]等,集体行为是复杂的集体行为systems.We分类分为三类研究性学习的根本利益和困难的课题之一。
由于代理商的地方性法规,什么是整体系统的集体行为?许多人已经在这一类是关于如何工作机制
集体行为出现从多代理系统。 “更多的是不同的”[3]。物理学家已经应用统计物理理论,探索了一些简单的模型,从理想气体模型,自旋玻璃,在恐慌模型和网络动态。
由于所需的集体行为,什么是代理商的地方性法规?
有些人这方面的工作类别。一个典型的例子是群体智能。由于整个系统的高层次的功能可以比所有个人的总和,我们如何建构一个本地代理大量相互作用的简单可靠的情报?一只蚂蚁,往往是简单随意移动。但蚂蚁殖民地可以有效地找到自己的巢中最短路径的食物来源。 |
我们的一样是因为我们都用了翻译器,我推荐你以后去www.iciba.com或者去下载金山词霸,有道词典,满意的话请加分。谢谢!
整个集团的一个客观的标题。这种控制法被证明是有效的解析和数值。请注意,软控制是从分布式控制方法不同。这是一种自然的方式来干预分布式系统。它可能带出在复杂系统的控制了许多有趣的问题和挑战。
集体行为是高层次(宏观)的自组织系统,它由一对(微观)个人(代理人)大型数字组成的财产。例子是同步,聚合,相变,格局的形成,群体智能,时尚等人发现这种现象在许多系统中,如鸟之群体,鱼类,蚁群合作,人群惊慌学校[1],善良在没有任何经济制度规范问题[2]等,集体行为是复杂的集体行为systems.We分类分为三类研究性学习的根本利益和困难的课题之一。
由于代理商的地方性法规,什么是整体系统的集体行为?许多人已经在这一类是关于如何工作机制
集体行为出现从多代理系统。 “更多的是不同的”[3]。物理学家已经应用统计物理理论,探索了一些简单的模型,从理想气体模型,自旋玻璃,在恐慌模型和网络动态。
由于所需的集体行为,什么是代理商的地方性法规?
有些人这方面的工作类别。一个典型的例子是群体智能。由于整个系统的高层次的功能可以比所有个人的总和,我们如何建构一个本地代理大量相互作用的简单可靠的情报?一只蚂蚁,往往是简单随意移动。但蚂蚁殖民地可以有效地找到自己的巢中最短路径的食物来源。 |
我们的一样是因为我们都用了翻译器,我推荐你以后去www.iciba.com或者去下载金山词霸,有道词典,满意的话请加分。谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
摘要问一个新问题:我们如何控制的多智能体系统自组织的集体行为吗?我们试图来回答这个问题,提出一个新的概念叫做“软控制”,能使地方政府规章现有的代理商,在系统。我们的软控制表明了该方法的可行性,并通过案例。考虑了简单但是典型的分布式多智能体模型对所提出的Vicsek etal.植绒鸟:各代理活动同样的速度却是不同的标题的更新使用当地的基础上,通过规则的平均自己的航向和文章的标题的邻居。大多数研究了该模型的自组织集体行为都是有关,如同步的标题。我们想要介入的集体行为(标题)的集团以软控制。一个指定的方法是增加一个特别探员,被称为“人事”,它能够控制的,但我们却被当作一个普通的代理人被其他的代理商。我们构造了一个控制规律的一番,这样它就可以同步
整个团体的客观的标题。该控制律被证实是有效的解析及数值模拟方法。注意,软控制不同于分布式控制的方法。这是一种自然方式干预分布式系统。它带来了许多有趣的问题与挑战的复杂系统的控制。
是高层次的集体行为(宏观)财产的自组织系统,内含大量(微观)个人(代理人)。的例子是同步的,聚集,相变,模式形成,群体智能,时装等。人们发现这种现象在许多系统,如绒的鸟类,鱼群,合作,恐慌的人群中蚂蚁殖民地[1]的基础上,规范在经济系统[2]的基础上,等。没有任何问题,集体行为是一种基本的和最困难的课题研究复杂系统。我们的集体行为的分类研究成的飞机票
整个团体的客观的标题。该控制律被证实是有效的解析及数值模拟方法。注意,软控制不同于分布式控制的方法。这是一种自然方式干预分布式系统。它带来了许多有趣的问题与挑战的复杂系统的控制。
是高层次的集体行为(宏观)财产的自组织系统,内含大量(微观)个人(代理人)。的例子是同步的,聚集,相变,模式形成,群体智能,时装等。人们发现这种现象在许多系统,如绒的鸟类,鱼群,合作,恐慌的人群中蚂蚁殖民地[1]的基础上,规范在经济系统[2]的基础上,等。没有任何问题,集体行为是一种基本的和最困难的课题研究复杂系统。我们的集体行为的分类研究成的飞机票
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询