求详细过程,谢谢啦!
1个回答
展开全部
dy/dx = 1/(x+y)^2
let
u = x+y
du/dx = 1+ dy/dx
dy/dx = 1/(x+y)^2
du/dx -1 = 1/u^2
du/dx = (u^2+1)/u^2
∫[u^2/(u^2+1) ] du = ∫dx
∫[1 - 1/(u^2+1) ] du = ∫dx
u - arctanu = x + C
x+y - arctan(x+y ) = x + C
y- arctan(x+y ) = C
let
u = x+y
du/dx = 1+ dy/dx
dy/dx = 1/(x+y)^2
du/dx -1 = 1/u^2
du/dx = (u^2+1)/u^2
∫[u^2/(u^2+1) ] du = ∫dx
∫[1 - 1/(u^2+1) ] du = ∫dx
u - arctanu = x + C
x+y - arctan(x+y ) = x + C
y- arctan(x+y ) = C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询