第八题,详细过程谢谢
1个回答
2017-08-16
展开全部
limx→0 arctanx/x
令t=arctanx
原式=limt→0 t/tant
=limt→0 tcost/sint
=1
limx→无穷[ (4+3x)/(3x-1)]^(x+1)
=limx→无穷[ (1+5/(3x-1))]^(x+1)
=limx→无穷[ (1+5/(3x-1))]^[(3x-1)/5*5(x+1)/(3x-1)]
=limx→无穷[ (1+5/(3x-1))]^(3x-1)/5]^lim(x->∞)[5(x+1)/(3x-1)]
=e^(5/3)
令t=arctanx
原式=limt→0 t/tant
=limt→0 tcost/sint
=1
limx→无穷[ (4+3x)/(3x-1)]^(x+1)
=limx→无穷[ (1+5/(3x-1))]^(x+1)
=limx→无穷[ (1+5/(3x-1))]^[(3x-1)/5*5(x+1)/(3x-1)]
=limx→无穷[ (1+5/(3x-1))]^(3x-1)/5]^lim(x->∞)[5(x+1)/(3x-1)]
=e^(5/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询