设O为△ABC所在平面内一点,且满足向量OA的模的平方加上向量OB模的平方等于向量OB模的平方加上向量CA模的

fnxnmn
2011-05-17 · TA获得超过5.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:90%
帮助的人:6684万
展开全部
已知O为三角形所在平面内的一点,且满足│OA│^2+│BC│ ^2=│OB│^2+│CA│^2=
│OC│^2+│AB│^2 ,求证O是垂心

|OA|^2+|BC|^2=|OB|^2+|CA|^2=|OC|^2+|AB|^2
所以0=|OA|^2+|BC|^2-|OB|^2-|CA|^2=(OA-OB)(OA+OB)+(BC-CA)(BC+CA)=
=BA(OA+OB)+BA(BC-CA)=
=BA(OA+AC+OB+BC)=2BA*OC==>BA和OC垂直。
同理BC和OA垂直,CA和OB垂直。==》点O是△ABC的垂心
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式