如图,已知在正方形ABCD中,M是AB的中点,E是AB延长线上一点,MN⊥DM且交∠CBE的平分线于点N.
(1)求∠EBN的度数。(2)若将上述条件的“M是AB上的任意一点”,其余条件不变,则结论∠EBN的度数会发生变化吗?请说明理由....
(1)求∠EBN的度数。
(2)若将上述条件的“M是AB上的任意一点”,其余条件不变,则结论∠EBN的度数会发生变化吗?请说明理由. 展开
(2)若将上述条件的“M是AB上的任意一点”,其余条件不变,则结论∠EBN的度数会发生变化吗?请说明理由. 展开
5个回答
展开全部
:(1)过N作NF⊥AE于F,MN交BC于H,
∵HB∥NF,MN⊥DM,
∴△MBH∽△DAM,△MBH∽△MFN
∴BHMB=AMDA=12=NFMF,
∴2NF=MF,
又∵NF=BF,
∴MB=BF=12DA,
由以上可得△DAM≌△MFN
即可得DM=MN;
(2)解:结论“DM=MN”仍成立.
证明:
在AD上截取AF'=AM,连接F'M.
∵DF'=AD-AF',MB=AB-AM,AD=AB,AF'=AM,
∴DF'=MB,
∵∠F'DM+∠DMA=∠BMN+∠DMA=90°,
∴∠F'DM=∠BMN.
又∠DF'M=∠MBN=135°,
在△DF'M和△MBN中
∠F′DM=∠BMNDF′=BM∠DF′M=∠MBN,
∴△DF'M≌△MBN.
∴DM=MN.
∵HB∥NF,MN⊥DM,
∴△MBH∽△DAM,△MBH∽△MFN
∴BHMB=AMDA=12=NFMF,
∴2NF=MF,
又∵NF=BF,
∴MB=BF=12DA,
由以上可得△DAM≌△MFN
即可得DM=MN;
(2)解:结论“DM=MN”仍成立.
证明:
在AD上截取AF'=AM,连接F'M.
∵DF'=AD-AF',MB=AB-AM,AD=AB,AF'=AM,
∴DF'=MB,
∵∠F'DM+∠DMA=∠BMN+∠DMA=90°,
∴∠F'DM=∠BMN.
又∠DF'M=∠MBN=135°,
在△DF'M和△MBN中
∠F′DM=∠BMNDF′=BM∠DF′M=∠MBN,
∴△DF'M≌△MBN.
∴DM=MN.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:(1)取AD的中点H,连接HM,
∵四边形ABCD是正方形,M为AB的中点,
∴BM=HD=AM=AH,
∴△AMH为等腰直角三角形,
∴∠DHM=135°,
而BN是∠CBE的平分线.
∴∠MBN=135°,
∴∠DHM=∠MBN,
又∵DM⊥MN,
∴∠NMB+∠AMD=90°,
又∵∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
∠HDM=∠BMNDH=MB∠DHM=∠MBN,
∴△DHM≌△MBN(ASA),
∴DM=MN;
∵四边形ABCD是正方形,M为AB的中点,
∴BM=HD=AM=AH,
∴△AMH为等腰直角三角形,
∴∠DHM=135°,
而BN是∠CBE的平分线.
∴∠MBN=135°,
∴∠DHM=∠MBN,
又∵DM⊥MN,
∴∠NMB+∠AMD=90°,
又∵∠HDM+∠AMD=90°,
∴∠BMN=∠HDM,
∠HDM=∠BMNDH=MB∠DHM=∠MBN,
∴△DHM≌△MBN(ASA),
∴DM=MN;
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)过N作NF⊥AE于F,MN交BC于H,
∵HB∥NF,
∴△MBH∽△DAM,△MBH∽△MFN
∴BH MB =AM DA =1 2 =NF MF ,
∴2NF=MF,
又∵NF=BF,
∴MB=BF=1 2 DA,
由以上可得△DAM≌△MFN
即可得DM=MN;
(2)解:结论“DM=MN”仍成立.
证明:
在AD上截取AF'=AM,连接F'M.
∵DF'=AD-AF',MB=AB-AM,AD=AB,AF'=AM,
∴DF'=MB,
∵∠F'DM+∠DMA=∠BMN+∠DMA=90°,
∴∠F'DM=∠BMN.
又∠DF'M=∠MBN=135°,
在△DF'M和△MBN中
∠F′DM=∠BMN DF′=BM ∠DF′M=∠MBN ,
∴△DF'M≌△MBN.
∴DM=MN.
∵HB∥NF,
∴△MBH∽△DAM,△MBH∽△MFN
∴BH MB =AM DA =1 2 =NF MF ,
∴2NF=MF,
又∵NF=BF,
∴MB=BF=1 2 DA,
由以上可得△DAM≌△MFN
即可得DM=MN;
(2)解:结论“DM=MN”仍成立.
证明:
在AD上截取AF'=AM,连接F'M.
∵DF'=AD-AF',MB=AB-AM,AD=AB,AF'=AM,
∴DF'=MB,
∵∠F'DM+∠DMA=∠BMN+∠DMA=90°,
∴∠F'DM=∠BMN.
又∠DF'M=∠MBN=135°,
在△DF'M和△MBN中
∠F′DM=∠BMN DF′=BM ∠DF′M=∠MBN ,
∴△DF'M≌△MBN.
∴DM=MN.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
没图啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询