概率密度和分布函数什么区别呢?
展开全部
概率密度和分布函数的区别是概念不同、描述对象不同、求解方式不同。
1、概念不同:概率指事件随机发生的机率,对于均匀分布函数,概率密度等于一段区间(事件的取值范围)的概率除以该段区间的长度,它的值是非负的,可以很大也可以很小;分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。
2、描述对象不同:概率密度只是针对连续性变量而言,而分布函数是对所有随机变量取值的概率的讨论,包括连续性和离散型。
3、求解方式不同:已知连续型随机变量的密度函数,可以通过讨论及定积分的计算求出其分布函数;当已知连续型随机变量的分布函数时,对其求导就可得到密度函数。对离散型随机变量而言,如果知道其概率分布(分布列),也可求出其分布函数;当然,当知道其分布函数时也可求出概率分布。
参考资料:
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
两者的定义 概率密度函数:用于直观地描述连续性随机变量(离散型的随机变量下该函数称为分布律),表示瞬时幅值落在某指定范围内的概率,因此是幅值的函数。连续样本空间情形下的概率称为概率密度,当试验次数无限增加,直方图趋近于光滑曲线。
边缘计算可...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
一、从数学上看,分布函数F(x)=P(X<x),表示随机变量X的值小于x的概率。这个意义很容易理解。
概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率。如果在某一x附近取非常小的一个邻域Δx,那么,随机变量X落在(x, x+Δx)内的概率约为f(x)Δx,即P(x<X<x+Δx)≈f(x)Δx。
换句话说,概率密度f(x)是X落在x处“单位宽度”内的概率。“密度”一词可以由此理解。
二、一元函数下.
概率分布函数是概率密度函数的变上限积分,就是原函数.
概率密度函数是概率分布函数的一阶导函数.
多元函数下.
联合分布函数是联合密度函数的重积分.
联合密度函数是联合分布函数关于每个变量的偏导.
三、概率密度只是针对连续性变量而言,而分布函数是对所有随机变量取值的概率的讨论,包括连续性和离散型;
已知连续型随机变量的密度函数,可以通过讨论及定积分的计算求出其分布函数;当已知连续型随机变量的分布函数时,对其求导就可得到密度函数。
对离散型随机变量而言,如果知道其概率分布(分布列),也可求出其分布函数;当然,当知道其分布函数时也可求出概率分布。
概率密度f(x)是F(x)在x处的关于x的一阶导数,即变化率。如果在某一x附近取非常小的一个邻域Δx,那么,随机变量X落在(x, x+Δx)内的概率约为f(x)Δx,即P(x<X<x+Δx)≈f(x)Δx。
换句话说,概率密度f(x)是X落在x处“单位宽度”内的概率。“密度”一词可以由此理解。
二、一元函数下.
概率分布函数是概率密度函数的变上限积分,就是原函数.
概率密度函数是概率分布函数的一阶导函数.
多元函数下.
联合分布函数是联合密度函数的重积分.
联合密度函数是联合分布函数关于每个变量的偏导.
三、概率密度只是针对连续性变量而言,而分布函数是对所有随机变量取值的概率的讨论,包括连续性和离散型;
已知连续型随机变量的密度函数,可以通过讨论及定积分的计算求出其分布函数;当已知连续型随机变量的分布函数时,对其求导就可得到密度函数。
对离散型随机变量而言,如果知道其概率分布(分布列),也可求出其分布函数;当然,当知道其分布函数时也可求出概率分布。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设:概率分布函数为:F(x)
概率密度函数为:f(x)
二者的关系为:
f(x) = dF(x)/dx
即:密度函数f 为分布函数 F 的一阶导数。或者分布函数为密度函数的积分。
概率密度函数为:f(x)
二者的关系为:
f(x) = dF(x)/dx
即:密度函数f 为分布函数 F 的一阶导数。或者分布函数为密度函数的积分。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
如果X
离散型随机变量,定义概率质量函数为fX(x)
,PMF其实就是高中所学的离散型随机变量的分布律,即
fX(x)=Pr(X=x)
比如对于掷一枚均匀硬币,如果正面令X=1,如果反面令X=0,那么它的PMF就是
fX(x)={12 if x∈{0,1}0 if x?{0,1}
离散型随机变量,定义概率质量函数为fX(x)
,PMF其实就是高中所学的离散型随机变量的分布律,即
fX(x)=Pr(X=x)
比如对于掷一枚均匀硬币,如果正面令X=1,如果反面令X=0,那么它的PMF就是
fX(x)={12 if x∈{0,1}0 if x?{0,1}
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询