36个。
分析过程如下:
最长的边长度是11,另外两边长用x,y表示,要构成三角形必须x+y≥12,列举出当y分别从11,10,9,8,7,6时,对应的三角形的个数,根据分类计数原理得到结果。
解:设另外两边长为x,y,且不妨设1≤x≤y≤11,要构成三角形,必须x+y≥12。
当y取值11时,x=1,2,3,…,11,可有11个三角形;
当y取值10时,x=2,3,…,10,可有9个三角形;
当y取值分别为9,8,7,6时,x取值个数分别是7,5,3,1;
∴根据分类计数原理知所求三角形的个数为11+9+7+5+3+1=36。
点评:本题考查分类计数原理,以及三角形的三边关系,关键是掌握三角形的三边关系定理,注意分类讨论思想的应用。
扩展资料:
三角形的性质:
1 、在平面上三角形的内角和等于180°(内角和定理)。
2 、在平面上三角形的外角和等于360° (外角和定理)。
3、 在平面上三角形的外角等于与其不相邻的两个内角之和。
4、 一个三角形的三个内角中最少有两个锐角。
5、 在三角形中至少有一个角大于等于60度,也至少有一个角小于等于60度。
6 、三角形任意两边之和大于第三边,任意两边之差小于第三边。
7、 在一个直角三角形中,若一个角等于30度,则30度角所对的直角边是斜边的一半。
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。
36个。
分析过程如下:
设较小的两边长为x、y且x≤y;
则x≤y≤11,x+y>11,x、y∈N*;
当x=1时,y=11;
当x=2时,y=10,11;
当x=3时,y=9,10,11;
当x=4时,y=8,9,10,11;
当x=5时,y=7,8,9,10,11;
当x=6时,y=6,7,8,9,10,11;
当x=7时,y=7,8,9,10,11;
…
当x=11时,y=11。
所以不同三角形的个数为1+2+3+4+5+6+5+4+3+2+1=36。
扩展资料:
三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。
推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
我们以0为界限,将整数分为三大类:
1. 正整数,即大于0的整数如,1,2,3······。
2. 零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
3. 负整数,即小于0的整数如,-1,-2,-3······。
奇数±奇数=偶数,偶数±偶数=偶数,奇数±偶数=奇数,偶数×偶数=偶数,奇数×偶数=偶数,奇数×奇数=奇数;即任意多个偶数的和、差、积仍为偶数,奇数个奇数的和、差为奇数,偶数个奇数的和、差为偶数。
若有限个整数之积为奇数,则其中每个整数都是奇数;若有限个整数之积为偶数,则这些整数中至少有一个是偶数;两个整数的和与差具有相同的奇偶性;一个整数的平方根若是整数,则两者具有相同的奇偶性。
36个。
分析过程如下:
设较小的两边长为x、y且x≤y;
则x≤y≤11,x+y>11,x、y∈N*;
当x=1时,y=11;
当x=2时,y=10,11;
当x=3时,y=9,10,11;
当x=4时,y=8,9,10,11;
当x=5时,y=7,8,9,10,11;
当x=6时,y=6,7,8,9,10,11;
当x=7时,y=7,8,9,10,11;
…
当x=11时,y=11。
所以不同三角形的个数为1+2+3+4+5+6+5+4+3+2+1=36。
扩展资料:
常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
1、锐角三角形:三角形的三个内角中最大角小于90度。
2、直角三角形:三角形的三个内角中最大角等于90度。
3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。
其中锐角三角形和钝角三角形统称为斜三角形。