什么是介值定理

 我来答
阿炎的情感小屋
高粉答主

2018-09-25 · 感性的双鱼座,用文字和你探讨情感问题。
阿炎的情感小屋
采纳数:434 获赞数:329360

向TA提问 私信TA
展开全部

一、介值定理,又名中间值定理,闭区间连续函数的重要性质之一。

二、定理定义

设函数f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值,f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ,使得f(ξ)=C (a<ξ<b)。

扩展资料

介值定理,又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。

考虑实数域上的区间  以及在此区间上的连续函数 。那么,

(1)如果u是在a和b之间的数,也就是说:

那么,存在  使得  。

(2)值域也是一个区间,或者它包含 ,或者它包含  。 

参考资料

百度百科-介值定理

北京埃德思远电气技术咨询有限公司
2023-07-25 广告
潮流计算是一种用于分析和计算电力系统中有功功率、无功功率、电压和电流分布的经典方法。它是在给定电力系统网络拓扑、元件参数和发电、负荷参量条件下,计算电力系统中各节点的有功功率、无功功率、电压和电流的实际运行情况。潮流计算主要用于研究电力系统... 点击进入详情页
本回答由北京埃德思远电气技术咨询有限公司提供
ljngd
2018-09-18 · TA获得超过2万个赞
知道小有建树答主
回答量:103
采纳率:0%
帮助的人:3.7万
展开全部

一、介值定理,又名中间值定理,闭区间连续函数的重要性质之一。

二、定理定义

设函数f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值,f(a)=A及f(b)=B,那么,对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ,使得f(ξ)=C (a<ξ<b)。

三、定理证明

设函数f(x)在闭区间[a,b]上连续,且在这区间的端点取不同的函数值,f(a)=A及f(b)=B,C为A与B之间的任意一个数,g(x)=F(x)-C,则g(x)在闭区间[a,b]上连续,且g(a)=A-C与g(b)=B-C异号。根据零点定理,开区间(a,b)内至少有一点ξ,使得g(ξ)=0 (a<ξ<b)。由于g(ξ)=f(ξ)-C,因此可得f(ξ)=C.

四、定理推广

在闭区间[a,b]上连续的函数f(x)的值域为闭区间[n,M],其中m与M依次为f(x)在[a,b]上的最小值和最大值。

扩展资料

一、简介

介值定理,又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。

二、历史

对于上面的u = 0,该声明也称为博尔扎诺定理。这个定理在1817年被伯纳德·博尔扎诺(Bernard Bolzano)首次证明。奥古斯丁 - 路易·柯西在1821年提供了一个证据。两者的灵感来自于对约瑟夫·路易斯拉格朗日函数的分析正式化的目标。连续函数具有中间值的想法早有起源。西蒙·斯蒂文通过提供用于构造解的十进制扩展的算法,证明了多项式的介值定理(以立方为例)。该算法迭代地将间隔细分为10个部分,在迭代的每个步骤产生一个附加的十进制数字。在给出连续性的正式定义之前,将介值作为连续函数定义的一部分。支持者包括路易斯·阿博加斯特(Louis Arbogast),没有跳跃的函数满足介值定理,并且具有尺寸对应于变量大小的增量。早期的作者认为结果是直观的,不需要证明。博尔扎诺和柯西的观点是定义一个连贯性的概念(就柯西案中的无限小数而言,在博尔扎诺案中使用实际的不平等),并提供基于这种定义的证据。

参考资料:百度百科—介值定理

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Kingavrack
推荐于2017-05-15 · TA获得超过350个赞
知道答主
回答量:4
采纳率:0%
帮助的人:8.1万
展开全部
设函数y=f(x)在闭区间[a,b]上连续,则在这区间必有最大最小函数值:f(min)=A,f(max)=B,且A≠B 。那么,不论C是A与B之间的怎样一个数,在开区间(a,b)内至少有一点ξ,使得 f(ξ)=C (a<ξ<b)。
  特别是,如果f(a)与f(b)异号,那么在开区间(a,b)内至少有一点ξ,使得f(ξ)=0 (a<ξ<b)---零值定理。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
欧欧耶
2019-12-21 · TA获得超过1万个赞
知道小有建树答主
回答量:1593
采纳率:100%
帮助的人:40.3万
展开全部
介值定理,又名中间值定理,是闭区间上连续函数的性质之一,闭区间连续函数的重要性质之一。在数学分析中,介值定理表明,如果定义域为[a,b]的连续函数f,那么在区间内的某个点,它可以在f(a)和f(b)之间取任何值,也就是说,介值定理是在连续函数的一个区间内的函数值肯定介于最大值和最小值之间。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友c24ef1f
2018-08-04
知道答主
回答量:3
采纳率:0%
帮助的人:2459
展开全部
针对介值定理,如果取的u在最大值和最小值的开区间里,其对应的δ就是在开区间里取,如果u在闭区间里取,则δ也是在闭区间里取,本质上说δ的开闭和你取的函数值所在区间开闭有关。零点定理δ就是在开区间取,没什么说的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(9)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式