请问这道题的答案为什么是sinx×lntanx?
2个回答
展开全部
u= lntan(x/2)
du/dx
= [1/tan(x/2)] .d/dx [tan(x/2)]
=[1/tan(x/2)] . [sec(x/2)]^2 .d/dx (x/2)
=(1/2){ [sec(x/2)]^2/ tan(x/2) }
=(1/sinx)
=cscx
v =cosx.lntanx
dv/dx
=-sinx.lntanx + cosx . (1/tanx) . d/dx ( tanx)
=-sinx.lntanx + cosx . (1/tanx) . ( secx)^2
=-sinx.lntanx + (1/tanx) . ( secx)
=-sinx.lntanx + cscx
y = lntan(x/2) - cosx.lntanx
dy/dx
=cscx -[-sinx.lntanx + cscx]
=sinx.lntanx
du/dx
= [1/tan(x/2)] .d/dx [tan(x/2)]
=[1/tan(x/2)] . [sec(x/2)]^2 .d/dx (x/2)
=(1/2){ [sec(x/2)]^2/ tan(x/2) }
=(1/sinx)
=cscx
v =cosx.lntanx
dv/dx
=-sinx.lntanx + cosx . (1/tanx) . d/dx ( tanx)
=-sinx.lntanx + cosx . (1/tanx) . ( secx)^2
=-sinx.lntanx + (1/tanx) . ( secx)
=-sinx.lntanx + cscx
y = lntan(x/2) - cosx.lntanx
dy/dx
=cscx -[-sinx.lntanx + cscx]
=sinx.lntanx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询