矩阵的计算

问大神们第二题怎么做啊... 问大神们第二题怎么做啊 展开
 我来答
湛易云0ib
2019-06-26 · TA获得超过6193个赞
知道大有可为答主
回答量:7479
采纳率:87%
帮助的人:324万
展开全部


一般有以下几种方法:

  1. 计算A^2,A^3 找规律,然后利用归纳法证明。

2.若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A
注:β^Tα =α^Tβ = tr(αβ^T)

3.分拆法:A=B+C,BC=CB,用二项式公式展开
适用于 B^n 易计算,C的低次幂为零:C^2 或 C^3 = 0.

4.用对角化 A=P^-1diagP
A^n = P^-1diag^nP

5.若r(A)=1则A能分解为一行与一列的两个矩阵的乘积,用结合律就可以很方便的求出A^n
6.若A能分解成2个矩阵的和A = B + C而且BC = CB则A^n = (B+C)^n可用二项式定理展开,当然B,C之中有一个的方密要尽快为0
7.当A有n个线性无关的特征向量时,可用相似对角化来求A^n
8.通过试算A^2 A^3,如有某种规律可用数学归纳法

拓展资料

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。




推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式