1. ∫(-π/2到π/2) [(sinx/1+x^2)+(cosx)^2]dx 2. ∫(-π/2到π/2) [(绝对值x)+sinx)^2]dx
展开全部
∫(-π/2到π/2) [(sinx/1+x^2)+(cosx)^2]dx
奇函数的积分为0
故∫(-π/2到π/2) [(sinx/1+x^2)+(cosx)^2]dx
=∫(-π/2到π/2) (cosx)^2dx
=2∫(0到π/2) (cosx)^2dx
=∫(0到π/2) (1+cos2x)dx
=
∫(-π/2到π/2) [(绝对值x)+sinx)^2]dx
=∫(-π/2到π/2) [(绝对值x)^2+(sinx)^2+2绝对值x*sinx]dx
绝对值x*sinx是奇函数
∫(-π/2到π/2) [(绝对值x)+sinx)^2]dx
=∫(-π/2到π/2) [(绝对值x)^2+(sinx)^2]dx
=2∫(0到π/2) [x^2+(sinx)^2]dx
奇函数的积分为0
故∫(-π/2到π/2) [(sinx/1+x^2)+(cosx)^2]dx
=∫(-π/2到π/2) (cosx)^2dx
=2∫(0到π/2) (cosx)^2dx
=∫(0到π/2) (1+cos2x)dx
=
∫(-π/2到π/2) [(绝对值x)+sinx)^2]dx
=∫(-π/2到π/2) [(绝对值x)^2+(sinx)^2+2绝对值x*sinx]dx
绝对值x*sinx是奇函数
∫(-π/2到π/2) [(绝对值x)+sinx)^2]dx
=∫(-π/2到π/2) [(绝对值x)^2+(sinx)^2]dx
=2∫(0到π/2) [x^2+(sinx)^2]dx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询