2个回答
展开全部
y=arctan(x/y)
dy/dx
=[1/( 1+ (x/y)^2 ) ] [ 1/y - (x/y^2).dy/dx ]
= [y^2/(x^2+y^2) ] [ (y - x. dy/dx)/y^2 ]
= [1/(x^2+y^2) ] (y - x. dy/dx)
[1 + x/(x^2+y^2) ] .dy/dx = y/(x^2+y^2)
[x^2+y^2 +x] .dy/dx = y
dy/dx =y/[x^2+y^2 +x]
dy/dx
=[1/( 1+ (x/y)^2 ) ] [ 1/y - (x/y^2).dy/dx ]
= [y^2/(x^2+y^2) ] [ (y - x. dy/dx)/y^2 ]
= [1/(x^2+y^2) ] (y - x. dy/dx)
[1 + x/(x^2+y^2) ] .dy/dx = y/(x^2+y^2)
[x^2+y^2 +x] .dy/dx = y
dy/dx =y/[x^2+y^2 +x]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询