sin(A+B) = sinAcosB+cosAsinB公式的证明过程
展开全部
sin(A+B) = sinAcosB+cosAsinB
由sinθ=cos(-θ)
得:sin(α+β)=cos[-(α+β)]
=cos[(-α)-β]
=cos(-α)cosβ+sin(-α)sinβ
又∵cos(-α)=sinα
sin(-α)=cosα
∴sin(α+β)=sinαcosβ+cosαsinβ
由sinθ=cos(-θ)
得:sin(α+β)=cos[-(α+β)]
=cos[(-α)-β]
=cos(-α)cosβ+sin(-α)sinβ
又∵cos(-α)=sinα
sin(-α)=cosα
∴sin(α+β)=sinαcosβ+cosαsinβ
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询