利用洛必达法则求极限,如图所示
2个回答
展开全部
(6)
lim(x->1) ( 2/lnx - x/ln√x )
=lim(x->1) ( 2/lnx - 2x/lnx )
=2lim(x->1) (1-x)/lnx (0/0分子分母分别求导)
=2lim(x->1) -1/(1/x)
=2lim(x->1) -x
=-2
(8)
let
u = π/4 -x
lim(x->π/4) ( tanx)^[tan(2x) ]
=lim(u->0) [ tan(π/4 -u) ]^[tan(π/2 -2u) ]
=lim(u->0) [tan(π/4 -u)]^[1/tan(2u) ]
=lim(u->0) [(1-tanu)/(1+tanu) ]^[1/tan(2u) ]
=lim(u->0) [ -1 + 2/(1+tanu) ]^[1/tan(2u) ]
=lim(u->0) [ 1 - 2/(1+u) ]^[1/(2u) ]
= e^(-1)
lim(x->1) ( 2/lnx - x/ln√x )
=lim(x->1) ( 2/lnx - 2x/lnx )
=2lim(x->1) (1-x)/lnx (0/0分子分母分别求导)
=2lim(x->1) -1/(1/x)
=2lim(x->1) -x
=-2
(8)
let
u = π/4 -x
lim(x->π/4) ( tanx)^[tan(2x) ]
=lim(u->0) [ tan(π/4 -u) ]^[tan(π/2 -2u) ]
=lim(u->0) [tan(π/4 -u)]^[1/tan(2u) ]
=lim(u->0) [(1-tanu)/(1+tanu) ]^[1/tan(2u) ]
=lim(u->0) [ -1 + 2/(1+tanu) ]^[1/tan(2u) ]
=lim(u->0) [ 1 - 2/(1+u) ]^[1/(2u) ]
= e^(-1)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询