高数不定积分四道题在线等待详解,谢谢!
展开全部
3.令 u = √x, 则 I = ∫sinu 2udu/u = 2∫sinu du = -2cosu + C = -2cos√x + C.
4.令 u = √x, 则 I = ∫2udu/[u(1+u^2)] = 2∫du/(1+u^2) = 2arctanu + C
= 2arctan√x + C
5. I = (1/2)∫(1-cos4x)dx = (1/2)x - (1/8)sin4x + C
6. 令 tan(x/2) = u, 则 I = ∫[2du/(1+u^2)]/[1+2u/(1+u^2)]
= 2∫du/(1+u)^2 = - 2/(1+u) + C = -2/[1+tan(x/2)] + C
4.令 u = √x, 则 I = ∫2udu/[u(1+u^2)] = 2∫du/(1+u^2) = 2arctanu + C
= 2arctan√x + C
5. I = (1/2)∫(1-cos4x)dx = (1/2)x - (1/8)sin4x + C
6. 令 tan(x/2) = u, 则 I = ∫[2du/(1+u^2)]/[1+2u/(1+u^2)]
= 2∫du/(1+u)^2 = - 2/(1+u) + C = -2/[1+tan(x/2)] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询