4个回答
展开全部
f'(x)=x^(3/2)+(x-5)*3/2*x^(1/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
可以先把函数变一下型(展开)。有:
f(x)=(x-5)•[x^(2/3)] =x•[x^(2/3)] - 5•[x^(2/3]
=x^(5/3) - 5•[x^(2/3)]
然后求导:
f’=(5/3)•[x^(2/3)] - (10/3)•[x^(-1/3)]
=(5/3)•[x^(2/3)]•{1-2•[x^(-1/3 - 2/3)]}
=(5/3)•[x^(2/3)]•(1-2/x)
所求极值时令f’=0,则有1-2/x=0和x=0.
即x=2, x=0
f(x)=(x-5)•[x^(2/3)] =x•[x^(2/3)] - 5•[x^(2/3]
=x^(5/3) - 5•[x^(2/3)]
然后求导:
f’=(5/3)•[x^(2/3)] - (10/3)•[x^(-1/3)]
=(5/3)•[x^(2/3)]•{1-2•[x^(-1/3 - 2/3)]}
=(5/3)•[x^(2/3)]•(1-2/x)
所求极值时令f’=0,则有1-2/x=0和x=0.
即x=2, x=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询