初二数学证明题

AO平分∠BAC,AB=AC,连接BE.CD并延长相交AC、AB于E、D.共有4组全等三角形,怎么证明?(4组)... AO平分∠BAC,AB=AC,连接BE.CD并延长相交AC、AB于E、D.
共有4组全等三角形,怎么证明?(4组)
展开
失去的諾言♀
2011-05-21
知道答主
回答量:3
采纳率:0%
帮助的人:0
展开全部
(1)AO平分∠BAC
∴∠BAO=∠CAO
在△ABO与△AOC中
AO=AO(公共边)
∠BAO=∠CAO(已证)
AB=AC(已知)
∴△ABO全等△AOC(边角边)
(2)因为三角形ABO全等三角形AOC(已证)
所以角ABC=角ACD(全等三角形的对应角相等)
在三角形ABE与三角形ACD中
角ABC=角ACD(已证)
角BAE=角CAD(公共角)
AB=AC(已知)
所以三角形ABE全等三角形ACD(角边角)
(3)因为AO是平分线
所以AO也平分角DOE
所以角DOA=角ADE
在三角形ADO与AEO中
角DAO=角EAO(已证)
AO=AO(公共边)
角AOD=角AOE(已证)
所以三角形AOD全等三角形AEO(角边角)
(4)因为三角形ABO全等三角形AOC
三角形ADO全等三角形AEO
所以三角形ABO-三角形ADO=三角形ACO-三角形AEO
所以三角形DBO全等三角形EOC
弘锦小汤圆
2011-05-19 · TA获得超过161个赞
知道答主
回答量:135
采纳率:0%
帮助的人:64.7万
展开全部
∵AO平分∠BAC,AB=AC
∴△ABO=△ACO
又∵连接BE.CD并延长相交AC、AB于E、D.
∴△ADO=△AEO
△BOD=△COE
△ABE=△ ACD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式