计量经济学中的普通最小二乘法(OLS)的4个基本假设条件是什么?在线等
2018-04-12 · 知道合伙人教育行家
计量经济学中的普通最小二乘法(OLS)的4个基本假设条件分别为:
1、解释变量是确定变量,不是随机变量。
2、随机误差项具有零均值、同方差何不序列相关性。
3、随机误差项与解释变量之间不相关。
4、随机误差项服从零均值、同方差、零协方差的正态分布。
一、原理
工具变量法对于恰好识别的结构方程是有效的。但对过度识别方程虽然能够给出过度识别结构方程的参数估计,但这种方法不是有效的。其原因在于选择工具变量的任意性和失去了未被选用的前定变量所提供的信息。那么如何解决在模型中选取前定变量来构造内生说明变量的工具变量呢?
二、特性
在实际应用二阶段最小二乘法时,第一阶段对约简型方程应用OLS法只需求出我们所需要的,并不需要求出相应的εit的值。第二阶段只需用代替所估计方程右边的yit即可应用OLS法,只不过这里的ε*it已不是原来uit罢了。综上所述,二阶段最小二乘法第一阶段的任务是产生一个工具变量。第二阶段的任务是通过一种特殊形式的工具变量法得出结构参数的一致估计量。
三、实现
一个很自然的想法是,如果模型中每个内生说明变量的工具变量都在前定变量中选取,那么工具变量的最普遍的形式便是模型中所有前定变量的线性组合,也就是我们可以利用间接最小二乘法将约简型方程估计式作为工具变量。这就解决了选择工具变量的唯一性和合理性的问题。所谓合理就是指工具变量与它所代表的内生说明变量相关性最强。
四、应用
在EViews软件中,二阶段最小二乘法,选择工具变量可以直接应用TSLS来实现。
计量经济学中的普通最小二乘法(OLS)的4个基本假设条件是:
1、解释变量是确定变量,不是随机变量。
2、随机误差项具有零均值、同方差何不序列相关性。
3、随机误差项与解释变量之间不相关。
4、随机误差项服从零均值、同方差、零协方差的正态分布。
通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
扩展资料:
最小二乘法的来历:
1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星的位置。随后全世界的科学家利用皮亚齐的观测数据开始寻找谷神星,但是根据大多数人计算的结果来寻找谷神星都没有结果。
时年24岁的高斯也计算了谷神星的轨道。奥地利天文学家海因里希·奥尔伯斯根据高斯计算出来的轨道重新发现了谷神星。高斯使用的最小二乘法的方法发表于1809年他的著作《天体运动论》中。
计量经济学中的普通最小二乘法(OLS)的4个基本假设条件是:
1、解释变量是确定变量,不是随机变量。
2、随机误差项具有零均值、同方差何不序列相关性。
3、随机误差项与解释变量之间不相关。
4、随机误差项服从零均值、同方差、零协方差的正态分布。
抽样误差
在随机误差中,最重要的是抽样误差。我们从同一总体中随机抽取若干个大小相同的样本,各样本平均数(或平均率)之间会有所不同。这些样本间的差异,同时反映了样本与总体间的差异。它是由于从总体中抽取样本才出现的误差,统计上称为抽样误差(或抽样波动)。例如,抽样误差在医学生物实验中最主要的来源是个体的变异。所以这是一种难以控制的、不可避免的误差。
以上内容参考:百度百科-随机误差
2. 随机误差项具有零均值、同方差何不序列相关性
3. 随机误差项与解释变量之间不相关
4. 随机误差项服从零均值、同方差、零协方差的正态分布