如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点。求证:AF⊥CD。
4个回答
展开全部
连接AC、AD
在△ABC和△AED中
AB=AE,
∠B=∠E
BC=ED
△ABC≌△AED
所以AC=AD
△ACD是等腰三角形,AF是底边中线,因此也是底边上的高
所以AF⊥CD
如果没学过等腰三角形性质
可以证明△ACF≌△ADF
(AC=AD,AF=AF,CF=DF)
在△ABC和△AED中
AB=AE,
∠B=∠E
BC=ED
△ABC≌△AED
所以AC=AD
△ACD是等腰三角形,AF是底边中线,因此也是底边上的高
所以AF⊥CD
如果没学过等腰三角形性质
可以证明△ACF≌△ADF
(AC=AD,AF=AF,CF=DF)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:AF⊥CD.
连接AC、AD.
在△ABC和△AED中,
∵AB=AE,∠B=∠E,BC=ED,
∴△ABC≌△AED.(SAS)
∴AC=AD.
∵F为CD的中点,
∴AF⊥CD.
连接AC、AD.
在△ABC和△AED中,
∵AB=AE,∠B=∠E,BC=ED,
∴△ABC≌△AED.(SAS)
∴AC=AD.
∵F为CD的中点,
∴AF⊥CD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接AC、AD
在△ABC和△AED中
AB=AE(已知)
∠B=∠E(已知)
BC=ED(已知)
△ABC≌△AED
∴AC=AD(全等三角形对应边相等)
在△ACF与△ADF中:
AC=AD(已证)
AF=AF(公共边)
CF=DF(中点的定义)
∴△ACF≌△ADF(SSS)
∴AC=AD(全等三角形对应边相等)
∵AF是底边中线(已知)
∴AF也是底边上的高
∴∠AFC=∠AFD=90°(高的定义)
∴AF⊥CD(垂直的定义)
在△ABC和△AED中
AB=AE(已知)
∠B=∠E(已知)
BC=ED(已知)
△ABC≌△AED
∴AC=AD(全等三角形对应边相等)
在△ACF与△ADF中:
AC=AD(已证)
AF=AF(公共边)
CF=DF(中点的定义)
∴△ACF≌△ADF(SSS)
∴AC=AD(全等三角形对应边相等)
∵AF是底边中线(已知)
∴AF也是底边上的高
∴∠AFC=∠AFD=90°(高的定义)
∴AF⊥CD(垂直的定义)
参考资料: 满意答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |