总体X服从参数为P的0-1分布,(X1,X2,……,Xn)是取自X的样本 可以判断(X1,X2,……,Xn)~b(n,p)吗?
(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同。应该是X=X1+…+Xn~B(n,p)就对了,前提是诸Xi彼此独立,可以直接求X的分布列验证。
在一定区间内变量取值有无限个,或数值无法一一列举出来。例如某地区男性健康成人的身长值、体重值,一批传染性肝炎患者的血清转氨酶测定值等。有几个重要的连续随机变量常常出现在概率论中,如:均匀随机变量、指数随机变量、伽马随机变量和正态随机变量。
扩展资料:
离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律(概率函数)而不是分布函数来描述离散型随机变量。
若已知X的分布函数,就可以知道X落在任一区间上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。
(X1,…,Xn)是个随机向量,B(n,p)是一个随机变量的分布,二者维数不同。X=X1+…+Xn~B(n,p)就对了,前提是诸Xi彼此独立,可以直接求X的分布列验证。
离散型随机变量与连续型随机变量也是由随机变量取值范围(或说成取值的形式)确定,变量取值只能取离散型的自然数,就是离散型随机变量。
连续型随机变量
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。
比如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3分钟、5分钟7毫秒、7√2分钟,在这十五分钟的时间轴上任取一点,都可能是等车的时间,因而称这随机变量是连续型随机变量。
应该是X=X1+…+Xn~B(n,p)就对了,前提是诸Xi彼此独立。可以直接求X的分布列验证。