若sinA+sinB=√2/2,求cosA+cosB取值范围

8826055
2011-05-20 · TA获得超过7510个赞
知道大有可为答主
回答量:1680
采纳率:81%
帮助的人:893万
展开全部
记sinA+sinB=x,cosA+cosB=y,则x²+y²=(sin²A+cos²A)+(sin²B+cos²B)+2(cosAcosB+sinAsinB)=2+2cos(A-B)
又x²=(sinA+sinB)²=1/2
于是y²=3/2+2cos(A-B)≤7/2,所以-√14/2≤y=cosA+cosB≤√14/2
又当A=B时sinA=√2/4,cosA=cosB=±√14/4,cosA+cosB=±√14/2
所以cosA+cosB∈[-√14/2,√14/2]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式