若sinA+sinB=√2/2,求cosA+cosB取值范围
1个回答
展开全部
记sinA+sinB=x,cosA+cosB=y,则x²+y²=(sin²A+cos²A)+(sin²B+cos²B)+2(cosAcosB+sinAsinB)=2+2cos(A-B)
又x²=(sinA+sinB)²=1/2
于是y²=3/2+2cos(A-B)≤7/2,所以-√14/2≤y=cosA+cosB≤√14/2
又当A=B时sinA=√2/4,cosA=cosB=±√14/4,cosA+cosB=±√14/2
所以cosA+cosB∈[-√14/2,√14/2]
又x²=(sinA+sinB)²=1/2
于是y²=3/2+2cos(A-B)≤7/2,所以-√14/2≤y=cosA+cosB≤√14/2
又当A=B时sinA=√2/4,cosA=cosB=±√14/4,cosA+cosB=±√14/2
所以cosA+cosB∈[-√14/2,√14/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询