用向量证明:三角形重心与顶点的距离等于它到对边中心点的距离的两倍

 我来答
茹翊神谕者

2023-03-12 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1701万
展开全部

简单分析一下,答案如图所示

英让始雨
2019-12-11 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:2123万
展开全部
证明:用归一法
不妨设AD与BE交于点O,向量BA=a,BC=b,则CA=BA-BC=a-b
因为BE是中线,所以BE=(a+b)/2,向量BO与向量BE共线,故设BO=xBE=(x/2)(a+b)
同理设AO=yAD=(y/2)(AB+AC)=y/2(-a+b-a)=-ya+(y/2)b
在三角形ABO中,AO=BO-BA
所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b
因为向量a和b线性无关,所以
-y=x/2-1
y/2=x/2
解得x=y=2/3
所以A0:AD=BO:BE=2:3
故AO:OD=BO:OE=2:1
设AD与CF交于O',同理有AO’:O'D=CO':O'F=2:1
所以有AO:OD=AO':O'D=2:1,注意到O和O’都在AD上,因此O=O’
因此有AO:OD=BO:OE=CO:OF=2:1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
仆云德暨婵
2019-07-03 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:30%
帮助的人:811万
展开全部
让我来。

am
是三角形
abc
的中线
,g

am
上,且
ag=2gm


m

bc
的中点,g
为三角形
abc
的重心

因此
ga+gb+gc=ga+2gm=ga+ag=0

上面的证明用到两个结论:一是重心到顶点的距离等于到对边中点距离的
2
倍,二是中点的向量表达式:m

bc
的中点,则
gm=1/2*(gb+gc)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式