数学的分类?
展开全部
数学的分支可以按照
“数”、“形”、“结构”、“变化”等研究性质来划分。在这种体系下,代数(包括数论)、几何(包括拓扑)、分析是三大基础性分支,概率统计、计算数学、应用数学、离散数学是派生性分支,此外,还有一个数学史、数学哲学、数学教育等研究数学学科本身的分支。
1.数学教育学
2.数学史
3.数学哲学
4.纯粹数学
数学基础
数理逻辑
集合论
模型论
证明论
递归论
组合
组合计数
图论
拟阵论
组合设计
代数组合
代数
范畴论
格论
半群论
群论
环论
域论
模论
线性代数
表示理论
交换代数
结合代数
李代数
其它
非结合代数
同调代数
计算代数
拓扑
点集拓扑
代数拓扑
微分拓扑
几何拓扑
纽结论
数学分析
复分析
实分析
测度论
泛函分析
算子理论
调和分析
傅里叶分析
微分学
积分学
多变量微积分
常微分方程
偏微分方程
数值分析
“数”、“形”、“结构”、“变化”等研究性质来划分。在这种体系下,代数(包括数论)、几何(包括拓扑)、分析是三大基础性分支,概率统计、计算数学、应用数学、离散数学是派生性分支,此外,还有一个数学史、数学哲学、数学教育等研究数学学科本身的分支。
1.数学教育学
2.数学史
3.数学哲学
4.纯粹数学
数学基础
数理逻辑
集合论
模型论
证明论
递归论
组合
组合计数
图论
拟阵论
组合设计
代数组合
代数
范畴论
格论
半群论
群论
环论
域论
模论
线性代数
表示理论
交换代数
结合代数
李代数
其它
非结合代数
同调代数
计算代数
拓扑
点集拓扑
代数拓扑
微分拓扑
几何拓扑
纽结论
数学分析
复分析
实分析
测度论
泛函分析
算子理论
调和分析
傅里叶分析
微分学
积分学
多变量微积分
常微分方程
偏微分方程
数值分析
展开全部
数学是研究数量、结构、变化以及空间模型等概念的一门学科。
分为
数量
自然数
整数
有理数
实数
复数
结构
数论
抽象代数
群论
序理论
空间
几何
三角学
微分几何
拓扑学
分形
测度论
变化
微积分
向量分析
微分方程
动力系统
混沌理论
复分析
基础与哲学
数学逻辑
集合论
范畴论
分为
数量
自然数
整数
有理数
实数
复数
结构
数论
抽象代数
群论
序理论
空间
几何
三角学
微分几何
拓扑学
分形
测度论
变化
微积分
向量分析
微分方程
动力系统
混沌理论
复分析
基础与哲学
数学逻辑
集合论
范畴论
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |