如果实数X,Y,满足X^2+Y^2-4X+1=0,求Y/x的最大值,Y-X的最小值。
1个回答
展开全部
X^2+Y^2-4X+1=0
(x-2)^2+y^2=3
x-2=(√3)cosα,x=2+(√3)cosα
y=(√3)sinα
Y/x=m=(√3)sinα/[2+(√3)cosα]
(√3)√(1-cos^2α)=m[2+(√3)cosα]
(3m^2+3)cos^2α+4√3m^2cosα+4m^2-3=0
上方程未知数为cosα的判别式△≥0,即
(4√3m^2)^2-4(3m^2+3)(4m^2-3)≥0,整理化简得
m^2≤3
-√3≤m≤√3
可知Y/x的最大值=√3
Y-X
=(√3)sinα-[2+(√3)cosα]
=-2+√3(sinα-cosα)
=-2+√3*(√2/√2)*(sinα-cosα)
=-2+√3*√2(sinα/√2-cosα/√2)
=-2+√6*(sinα/√2-cosα/√2)
=-2+√6*(sinα*cos45°-cosα*sin45°)
=-2+√6*sin(α-45°)
因为-1≤sinα(α-45°)≤1
故(Y-X)的最小值=-2-√6
(x-2)^2+y^2=3
x-2=(√3)cosα,x=2+(√3)cosα
y=(√3)sinα
Y/x=m=(√3)sinα/[2+(√3)cosα]
(√3)√(1-cos^2α)=m[2+(√3)cosα]
(3m^2+3)cos^2α+4√3m^2cosα+4m^2-3=0
上方程未知数为cosα的判别式△≥0,即
(4√3m^2)^2-4(3m^2+3)(4m^2-3)≥0,整理化简得
m^2≤3
-√3≤m≤√3
可知Y/x的最大值=√3
Y-X
=(√3)sinα-[2+(√3)cosα]
=-2+√3(sinα-cosα)
=-2+√3*(√2/√2)*(sinα-cosα)
=-2+√3*√2(sinα/√2-cosα/√2)
=-2+√6*(sinα/√2-cosα/√2)
=-2+√6*(sinα*cos45°-cosα*sin45°)
=-2+√6*sin(α-45°)
因为-1≤sinα(α-45°)≤1
故(Y-X)的最小值=-2-√6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询