已知二次函数y=ax2-2ax+b(a≠0)的图像与x轴分别交于A.B两点(A点在B点的左侧),与y轴交于点C,直线y=-x+b经过
点B.C,且点B坐标为(3.0)(1):求二次函数解析式(2)在Y轴上是否存在点P,使得以点P.B.C.A为定点的四边形是梯形?若存在,求出P点坐标,若不存在,请说明理由...
点B.C,且点B坐标为(3.0) (1):求二次函数解析式 (2)在Y轴上是否存在点P,使得以点P.B.C.A为定点的四边形是梯形?若存在,求出P点坐标,若不存在,请说明理由
展开
展开全部
(1)
y=-x+b过点B(3,0),代入得:
b=3
把B(3,0)和b=3代入二次函数可求得a=-1
所以二次函数解析式为:y=-x^2+2x+3
(2)
假设存在一点P使得四边形PBCA为梯形
由二次函数解析式可得A(-1,0)
因为四边形为梯形
所以BC平行AP
则,直线AP的斜率等于直线BC,即K=-1
设直线AP的方程为:y=-(x+b)
把A(-1,0)代入直线方程,可求得直线得:y=-x-1
令,可得到P点坐标为P(0,-1)
然后验证AC和BP是否平行就可。
验证方法如下:
分别求出直线AC与直线BP的斜率,K(AC)=3;K(BP)=1/3,不相等,所以它们不平行
所以存在定点P(0,-1)使得四边形PBCA为梯形。
y=-x+b过点B(3,0),代入得:
b=3
把B(3,0)和b=3代入二次函数可求得a=-1
所以二次函数解析式为:y=-x^2+2x+3
(2)
假设存在一点P使得四边形PBCA为梯形
由二次函数解析式可得A(-1,0)
因为四边形为梯形
所以BC平行AP
则,直线AP的斜率等于直线BC,即K=-1
设直线AP的方程为:y=-(x+b)
把A(-1,0)代入直线方程,可求得直线得:y=-x-1
令,可得到P点坐标为P(0,-1)
然后验证AC和BP是否平行就可。
验证方法如下:
分别求出直线AC与直线BP的斜率,K(AC)=3;K(BP)=1/3,不相等,所以它们不平行
所以存在定点P(0,-1)使得四边形PBCA为梯形。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询